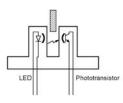
Features of Photomicrosensor


The Photomicrosensor is a compact optical sensor that senses objects or object positions with an optical beam. The transmissive Photomicrosensor and reflective Photomicrosensor are typical Photomicrosensors.

The transmissive Photomicrosensor incorporates an emitter and a transmissive that face each other as shown in Figure 1. When an object is located in the sensing position between the emitter and the detector, the object intercepts the optical beam of the emitter, thus reducing the amount of optical energy reaching the detector.

The reflective Photomicrosensor incorporates an emitter and a detector as shown in Figure 2. When an object is located in the sensing area of the reflective Photomicrosensor, the object reflects the optical beam of the emitter, thus changing the amount of optical energy reaching the detector.

"Photomicrosensor" is an OMRON product name. Generally, the Photomicrosensor is called a photointerrupter.

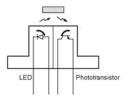
Figure 1. Transmissive Photomicrosensor

DataSheet

Absolute Maximum Ratings and Electrical and Optical Characteristics

The datasheets of Photomicrosensors include the absolute maximum ratings and electrical and optical characteristics of the Photomicrosensors as well as the datasheets of transistors and ICs. It is necessary to understand the difference between the absolutemaximum ratings and electrical and optical characteristics of various Photomicrosensors.

Absolute Maximum Ratings


The absolute maximum ratings of Photomicrosensors and other products with semiconductors specify the permissible operating voltage, current, temperature, and power limits of these products.

The products must be operated absolutely within these limits.

Therefore, when using any Photomicrosensor, do not ignore the absolute maximum ratings of the Photomicrosensor, otherwise the Photomicrosensor will not operate precisely. Furthermore, the Photomicrosensor may be deteriorate or become damaged, in which case OMRON will not be responsible.

Practically, Photomicrosensors should be used so that there will be some margin between their absolute maximum ratings and actual operating conditions.

Figure 2. Reflective Photomicrosensor

Electrical and Optical Characteristics

The electrical and optical characteristics of Photomicrosensors indicate the performance of Photomicrosensors under certain conditions.

Most items of the electrical and optical characteristics are indicated by maximum or minimum values. OMRON usually sells Photomicrosensors with standard electrical and optical characteristics.

The electrical and optical characteristics of Photomicrosensors sold to customers may be changed upon request. All electrical and optical characteristic items of Photomicrosensors indicated by maximum or minimum values are checked and those of the Photomicrosensors indicated by typical values are regularly checked before shipping so that OMRON can guarantee the performance of the Photomicrosensors.

In short, the absolute maximum ratings indicate the permissible operating limits of the Photomicrosensors and the electrical and optical characteristics indicate the maximum performance of the Photomicrosensors.

Terminology ·

The terms used in the datasheet of each Photomicrosensor with a phototransistor output circuit or a photo IC output circuit are explained below.

Phototransistor Output Photomicrosensor

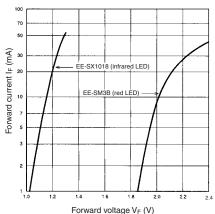
Symbol	Item	Definition
I _{FP}	Pulse forward current	The maximum pulse current that is allowed to flow continuously from the anode to cathode of an LED under a specified temperature, a repetition period, and a pulse width condition.
I _c	Collector current	The current that flows to the collector junction of a phototransistor.
Pc	Collector dissipation	The maximum power that is consumed by the collector junction of a phototransistor.
ID	Dark current	The current leakage of the phototransistor when a specified bias voltage is imposed on the phototransistor so that the polarity of the collector is positive and that of the emitter is negative on condition that the illumination of the Photomicrosensor is $0 \ell x$.
IL.	Light current	The collector current of a phototransistor under a specified input current condition and at a specified bias voltage.
V _{CE} (sat)	Collector-emitter saturated voltage	The ON-state voltage between the collector and emitter of a phototransistor under a specified bias current condition.
I _{LEAK}	Leakage current	The collector current of a phototransistor under a specified input current condition and at a specified bias voltage when the phototransistor is not exposed to light.
tr	Rising time	The time required for the leading edge of an output waveform of a phototransistor to rise from 10% to 90% of its final value when a specified input current and bias condition is given to the phototransistor.
tf	Falling time	The time required for the trailing edge of an output waveform of a phototransistor to decrease from 90% to 10% of its final value when a specified input current and bias condition is given to the phototransistor.
V _{CEO}	Collector-emitter voltage	The maximum positive voltage that can be applied to the collector of a phototransistor with the emitter at reference potential.
V _{ECO}	Emitter-collector voltage	The maximum positive voltage that can be applied to the emitter of a phototransistor with the collector at reference potential.

Phototransistor/Photo IC Output Photomicrosensor

Symbol	Item	Definition
I _F	Forward current	The maximum DC voltage that is allowed to flow continuously from the anode of the LED to the cathode of the LED under a specified temperature condition.
V _R	Reverse voltage	The maximum negative voltage that can be applied to the anode of the LED with the cathode at reference potential.
V _{cc}	Supply voltage	The maximum positive voltage that can be applied to the voltage terminals of the photo IC with the ground terminal at reference potential.
V _{out}	Output voltage	The maximum positive voltage that can be applied to the output terminal with the ground terminal of the photo IC at reference potential.
I _{OUT}	Output current	The maximum current that is allowed to flow in the collector junction of the output transistor of the photo IC.
Pout	Output permissible dissipation	The maximum power that is consumed by the collector junction of the output transistor of the photo IC.
V _F	Forward voltage	The voltage drop across the LED in the forward direction when a specified bias current is applied to the photo IC.
IR	Reverse current	The reverse leakage current across the LED when a specified negative bias is applied to the anode with the cathode at reference potential.
V _{oL}	Output low voltage	The voltage drop in the output of the photo IC when the IC output is turned ON under a specified voltage and output current applied to the photo IC.
V _{он}	Output high voltage	The voltage output by the photo IC when the IC output is turned OFF under a specified supply voltage and bias condition given to the photo IC.
Icc	Current consumption	The current that will flow into the sensor when a specified positive bias voltage is applied from the power source with the ground of the photo IC at reference potential.
I _{FT} (I _{FT OFF})	LED current when output is turned OFF	The forward LED current value that turns OFF the output of the photo IC when the forward current to the LED is increased under a specified voltage applied to the photo IC.
I _{FT} (I _{FT ON})	LED current when output is turned ON	The forward LED current value that turns ON the output of the photo IC when the forward current to the LED is increased under a specified voltage applied to the photo IC.
∆H	Hysteresis	The difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC is turned ON and when the photo IC is turned OFF.
f	Response frequency	The number of revolutions of a disk with a specified shape rotating in the light path, expressed by the number of pulse strings during which the output logic of the photo IC can be obtained under a specified bias condition given to the LED and photo IC (the number of pulse strings to which the photo IC can respond in a second).

Design

The following explains how systems using Photomicrosensors must be designed.


Emitter

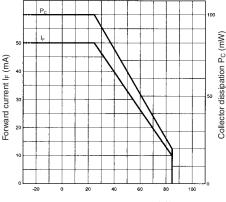
Characteristics of Emitter

The emitter of each Photomicrosensor has an infrared LED or red LED. Figure 3 shows how the LED forward current characteristics of the EE-SX1018, which has an emitter with an infrared LED, and those of the EE-SM3B, which has an emitter with a red LED, are changed by the voltages imposed on the EE-SX1018 and EE-SM3B. As shown in this figure, the LED forward current characteristics of the EE-SX1018 greatly differ from those of the EE-SM3B. The LED forward current characteristics of any Photomicrosensor indicate how the voltage drop of the LED incorporated by the emitter of the Photomicrosensor is changed by the LED's forward current ($l_{\rm P}$) flowing from the anode to cathode. Figure 3 shows that the forward voltage (V_F) of the red LED is higher than that of the infrared LED.

The forward voltage (V_r) of the infrared LED is approximately 1.2 V and that of the red LED is approximately 2 V provided that the practical current required by the infrared LED and that required by the red LED flow into these LEDs respectively.

Forward Voltage VF

Driving Current Level


It is especially important to decide the level of the forward current (l_r) of the emitter incorporated by any Photomicrosensor. The forward current must not be too large or too small.

Before using any Photomicrosensor, refer to the absolute maximum ratings in the datasheet of the Photomicrosensor to find the emitter's forward current upper limit. For example, the first item in the absolute maximum ratings in the datasheet of the EE-SX1018 shows that the forward current (I_r) of its emitter is 50 mA at a Ta (ambient temperature) of 25°C. This means the forward current (I_r) of the emitter is 50 mA maximum at a Ta of 25°C. As shown in Figure 4, the forward current must be reduced according to changes in the ambient temperature.

Figure 4 indicates that the forward current (I,) is approximately 27 mA maximum if the EE-SX1018 is used at a Ta of 60°C. This means that a current exceeding 27 mA must not flow into the emitter incorporated by the EE-SX1018 at a Ta of 60°C.

As for the lower limit, a small amount of forward current will be required because the LED will not give any output if the forward current IF is zero.

Ambient temperature Ta (°C)

In short, the forward current lower limit of the emitter of any Photomicrosensor must be 5 mA minimum if the emitter has an infrared LED and 2 mA minimum if the emitter has a red LED. If the forward current of the emitter is too low, the optical output of the emitter will not be stable. To find the ideal forward current value of the Photomicrosensor, refer to the light current (I₁) shown in the datasheet of the Photomicrosensor. The light current (IL) indicates the relationship between the forward current (I_e) of the LED incorporated by the Photomicrosensor and the output of the LED. The light current (IL) is one of the most important characteristics. If the forward current specified by the light current (I) flows into the emitter, even though there is no theoretical ground, the output of the emitter will be stable. This characteristic makes it possible to design the output circuits of the Photomicrosensor with ease. For example, the datasheet of EE-SX1018 indicates that a forward current (I_F) of 20 mA is required.

Design Method

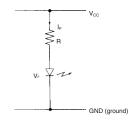
The following explains how the constants of a Photomicrosensor must be determined. Figure 5 shows a basic circuit that drives the LED incorporated by a Photomicrosensor.

The basic circuit absolutely requires a limiting resistor (R). If the LED is imposed with a forward bias voltage without the limiting resistor, the current of the LED is theoretically limitless because the forward impedance of the LED is low. As a result the LED will burn out. Users often ask OMRON about the appropriate forward voltage to be imposed on the LED incorporated by each Photomicrosensor model that they use. There is no upper limit of the forward voltage imposed on the LED provided that an appropriate limiting resistor is connected to the LED. There is, however, the lower limit of the forward voltage imposed on the LED. As shown in Figure 3, the lower limit of the forward voltage imposed on the LED must be at least 1.2 to 2 V, otherwise no forward current will flow into the LED. The supply voltage of a standard electronic circuit is 5 V minimum. Therefore, a minimum of 5 V should be imposed on the LED. A system incorporating any Photomicrosensor must be designed by considering the following.

1. Forward current (I_F)

2. Limiting resistor (R) (refer to Figure 5)

As explained above, determine the optimum level of the forward current (l_r) of the LED. The forward current (l_r) of the EE-SX1018, for example, is 20 mA. Therefore, the resistance of the limiting resistor connected to the LED must be decided so that the forward current of the LED will be approximately 20 mA. The resistance of the limiting resistor is obtained from the following.


$$R = \frac{V_{CC} - V_F}{I_F}$$

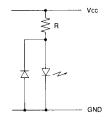
In this case 5 V must be substituted for the supply voltage (V_{cc}). The forward voltage (V_r) obtained from Figure 3 is approximately 1.2 V when the forward current (I_r) of the LED is 20 mA. Therefore, the following resistance is obtained.

$$R = \frac{V_{CC} - V_F}{I_F} = \frac{5 \text{ to } 1.2V}{20 \text{ mA}} = 190 \Omega$$

The forward current (IF) varies with changes in the supply voltage (VCC), forward voltage (VF), or resistance. Therefore, make sure that there is some margin between the absolute maximum ratings and the actual operating conditions of the Photomicrosensor.

The positions of the limiting resistor (R) and the LED in Figure 5 are interchangeable. If the LED is imposed with reverse voltages including noise and surge voltages, add a rectifier diode to the circuit as shown in Figure 6. LEDs can be driven by pulse voltages, the method of which is, however, rarely applied to Photomicrosensors.

In short, the following are important points required to operate any Photomicrosensor.


A forward voltage (VF) of approximately 1.2 V is required if the Photomicrosensor has an infrared LED and a forward voltage (VF) of approximately 2 V is required if the Photomicrosensor has a red LED.

The most ideal level of the forward current (IF) must flow into the LED incorporated by the Photomicrosensor.

Decide the resistance of the limiting resistor connected to the LED after deciding the value of the forward current (IF).

If the LED is imposed with a reverse voltage, connect a rectifier diode to the LED in parallel with and in the direction opposite to the direction of the LED.

Figure 6. Reverse Voltage Protection Circuit

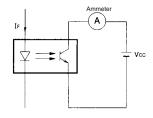
OMRON

Design of Systems Incorporating Photomicrosensors (1)

PHOTOTRANSISTOR OUTPUT

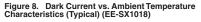
Characteristics of Detector Element

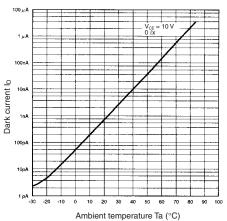
The changes in the current flow of the detector element with and without an optical input are important characteristics of a detector element. Figure 7 shows a circuit used to check how the current flow of the phototransistor incorporated by a Photomicrosensor is changed by the LED with or without an appropriate forward current (l_r) flow, provided that the ambient illumination of the Photomicrosensor is ideal (i.e., 0 k). When there is no forward current (l_r) flowing into the LED or the optical beam emitted from the LED is intercepted by an opaque object, the ammeter indicates several nanoamperes due to a current leaking from the phototransistor. This current is called the dark current (l_o). When the forward current (l_r) flows into the LED with no object intercepting the optical beam emitted from the LED, the ammeter indicates several milliamperes. This current is called the light current (l_i).


The difference between the dark current and light current is 106 times larger as shown below.

When optical beam to the phototransistor is interrupted Dark current $I_{\rm o}{:}~10^{\circ}\,A$

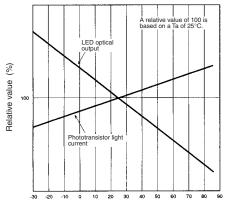
When optical beam to the phototransistor is not interrupted Light current $l_{\rm L}{\rm :}~10^{\rm -s}\,A$


The standard light current of a phototransistor is 106 times as large as the dark current of the phototransistor. This difference in current can be applied to the sensing of a variety of objects.


Figure 7. Measuring Circuit

The ambient illumination of the LED and phototransistor incorporated by the Photomicrosensor in actual operation is not 0 lx. Therefore, a current larger than the dark current of the phototransistor will flow into the phototransistor when the optical beam emitted from the LED is interrupted. This current is rather large and must not be ignored if the Photomicrosensor has a photoelectric Darlington transistor, which is highly sensitive, as the detector element of the Photomicrosensor. The dark current of the phototransistor incorporated by any reflective Photomicrosensor flows if there is no reflective object in the sensing area of the reflective Photomicrosensor. Furthermore, due to the structure of the reflective Photomicrosensor, a small portion of the optical beam emitted from the LED reaches the phototransistor after it is reflected inside the reflective Photomicrosensor. Therefore, the dark current and an additional current will flow into the phototransistor if there is no sensing object in the sensing area. This additional current is called leakage current (ILEAK). The leakage current of the phototransistor is several hundred nanoamperes and the dark current of the phototransistor is several nanoamperes.

The dark current temperature and light current temperature dependencies of the phototransistor incorporated by any Photomicrosensor must not be ignored. The dark current temperature dependency of the phototransistor increases when the ambient temperature of the Photomicrosensor in operation is high or the Photomicrosensor has a photoelectric Darlington transistor as the detector element of the Photomicrosensor. Figure 8 shows the dark current temperature dependency of the phototransistor incorporated by the EE-SX1018.



Due to the temperature dependency of the phototransistor, the light current (IL) of the phototransistor as the detector element of the Photomicrosensor increases according to a rise in the ambient temperature. As shown in Figure 9, however, the output of the LED decreases according to a rise in the ambient temperature due to the temperature dependency of the LED. An increase in the light current of the phototransistor is set off against a decrease in the output of the LED and consequently the change of the output of the Photomicrosensor according to the ambient temperature is comparatively small. Refer to Figure 10 for the light current temperature dependency of the phototransistor incorporated by the EE-SX1018.

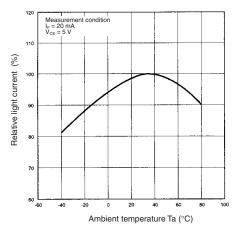

The light current temperature dependency shown in Figure 10 is, however, a typical example. The tendency of the light current temperature dependency of each phototransistor is indefinite. This means the temperature compensation of any Photomicrosensor is difficult.

Figure 9. LED and Phototransistor Temperature Characteristics (Typical)

Ambient temperature Ta (°C)

Figure 10. Relative Light Current vs. Ambient Temperature Characteristics (EE-SX1018)

Changes in Characteristics

The following explains the important points required for the designing of systems incorporating Photomicrosensors by considering worst case design technique. Worst case design technique is a method to design systems so that the Photomicrosensors will operate normally even if the characteristics of the Photomicrosensors are at their worst. A system incorporating any Photomicrosensor must be designed so that they will operate even if the light current (l_i) of the phototransistor is minimal and the dark current (l_i) and leakage current of the photomicrosensor meats that the system must be designed so that it will operate even if the light current of the phototransistor are maximal. This means that the system must be designed so that it will operate even if the time that the Photomicrosensor sones an object and the time that the Photomicrosensor sones not sense the object is minimal.

The worst light current (l_i) and dark current (l_b) values of the phototransistor incorporated by any Photomicrosensor is specified in the datasheet of the Photomicrosensor. (These values are specified in the specifications either as the minimum value or maximum value.)

Table 1 shows the dark current (I_0) upper limit and light current (I_1) lower limit values of the phototransistors incorporated by a variety of Photomicrosensors.

Systems must be designed by considering the dark current (I_o) upper limit and light current (I_o) lower limit values of the phototransistors. Not only these values but also the following factors must be taken into calculation to determine the upper limit of the dark current (I_o) of each of the phototransistors.

- External light interference
- Temperature rise
- · Power supply voltage
- Leakage current caused by internal light reflection if the systems use reflective Photomicrosensors.

The above factors increase the dark current $(I_{\mbox{\tiny D}})$ of each phototransistor.

As for the light current (I,) lower limit of each phototransistor, the following factors must be taken into calculation.

- Temperature change
- Secular change

The above factors decrease the light current $\left(I_{\text{L}}\right)$ of each phototransistor.

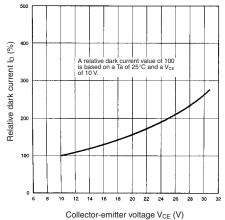
Table 2 shows the increments of the dark current (I_0) and the decrements of the light current (I_0) of the phototransistors.

Therefore, if the EE-SX1018 is operated at a Ta of 60°C maximum and a VCC of 10 V for approximately 50,000 hours, for example, the dark current (I₀) of the phototransistor incorporated by the EE-SX1018 will be approximately 4 mA and the light current (I₀) of the phototransistor will be approximately 1 mA because the dark current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes maximum and the light current (I₀) of the phototransistor at a Ta of 25°C is 200 nanoamperes

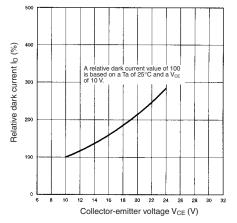
Table 3 shows the estimated worst values of a variety of Photomicrosensors, which must be considered when designing systems using these Photomicrosensors.

The dispersion of the characteristics of the Photomicrosensors must be also considered, which is explained in detail later. The light current (I,) of the phototransistor incorporated by each reflective Photomicrosensor shown in its datasheet was measured under the standard conditions specified by OMRON for its reflective Photomicrosensors. The light current (I,) of any reflective Photomicrosensor greatly varies with its sensing object and sensing distance.

Table 1. Rated Dark Current (I_D) and Light Current (I_L) Values


Model	Upper limit (I _D)	Lower limit (I_)	Condition
EE-SG3(-B)	200 nA	2 mA	I _F = 15 mA
EE-SX1018, -SX1055 EE-SX1041, -SX1042 EE-SX1070, -SX1071 EE-SX198, -SX199	200 nA	0.5 mA	I _F = 20 mA
EE-SM3 EE-SM3B EE-SJ3W-B EE-SK3W-B	250 nA	1.5 mA	$I_F = 3 \text{ mA}$
EE-SB5(-B) EE-SF5(-B) EE-SY110	200 nA	0.2 mA	I _F = 20 mA (see note)
EE-SY201	250 nA	0.3 mA	I _F = 5 mA (see note)
Condition	V _{ce} = 10 V, 0 lx Ta = 25°C	V _{c∈} = 10 V Ta = 25°C	-

Note: These values were measured under the standard conditions specified by OMRON for the corresponding Photomicrosensors.


Table 2. Dependency of Detector Elements on Various Factors

Elements		Phototransistor	Photo-Darlington transistor
Dark current I _D	External light interference	To be checked using experiment	To be checked using experiment
	Temperature rise	Increased by approximately 10 times with a temperature rise of 25°C.	Increased by approximately 28 times with a temperature rise of 25°C.
	Supply voltage	See Figure 11.	See Figure 12.
Light current I	Temperature change	Approximately -20% to 10%	Approximately -20% to 10%
	Secular change (20,000 to 50,000 hours) Note: For an infrared LED.	Decreased to approximately one-half of the initial value considering the temperature changes of the element.	Decreased to approximately one-half of the initial value considering the temperature changes of the element.

Figure 11. Dark Current Imposed Voltage Dependency (Typical) (EE-SX1018)

Figure 12. Dark Current Imposed Voltage Dependency (Typical) (EE-SM3B)

Table 3. Estimated Worst Values of a Variety of Photomicrosensors

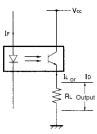
Model	Estimated worst value (I _D)	Estimated worst value (I_)	Condition
EE-SG3(-B)	4 nA	1 mA	I _F = 15 mA
EE-SX1018, -SX1055 EE-SX1041, -SX1042 EE-SX1070, -SX1071 EE-SX198, -SX199	4 nA	0.25 mA	$I_{\rm F} = 20 \text{ mA}$
EE-SM3 EE-SM3B EE-SJ3W-B EE-SK3W-B	25 nA	0.75 mA	$I_{\rm F} = 3 \text{mA}$
EE-SB5(-B) EE-SF5(-B) EE-SY110	4 nA	0.1 mA	I _F = 20 mA (see note)
EE-SY201	25 nA	0.15 mA	I _F = 5 mA (see note)
Condition	$V_{ce} = 10 \text{ V}, 0 \text{ Ix}$ Ta = 60°C	$V_{ce} = 10 \text{ V},$ Operating hours = 50,000 to 100,000 hrs Ta = Topr	-

Note: These values were measured under the standard conditions specified by OMRON for the corresponding Photomicrosensors with an Infrared LED.

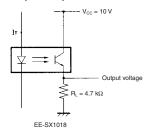
Design of Basic Circuitry

The following explains the basic circuit incorporated by a typical Photomicrosensor and the important points required for the basic circuit.

The flowing currents (i.e., I_L and I^P) of the phototransistor incorporated by the Photomicrosensor must be processed to obtain the output of the Photomicrosensor. Refer to Figure 13 for the basic circuit. The light current (I_L) of the phototransistor will flow into the resistor (R_L) if the phototransistor receives an optical input and the dark current (I_D) and leakage current of the phototransistor will flow into the resistor (R_L) if the phototransistor does not receive any optical input. Therefore, if the phototransistor receives an optical input, the output voltage imposed on the resistor (R_L) will be obtained from the following.


IL x RL

If the phototransistor does not receive any optical input, the output voltage imposed on the resistor (RL) will be obtained from the following.


(I_D + leakage current) x R_L

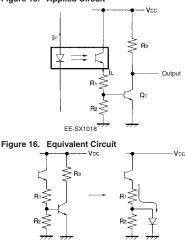
The output voltage of the phototransistor is obtained by simply connecting the resistor (R₁) to the phototransistor. For example, to obtain an output of 4 V minimum from the phototransistor when it is ON and an output of 1 V maximum when the phototransistor is OFF on condition that the light current (IL) of the phototransistor is 1 mA and the leakage current of the phototransistor is 0.1 mA, and these are the worst light current and leakage current values of the phototransistor, the resistance of the resistor (RL) must be approximately 4.7 kΩ. Then, an output of 4.7 V (i.e., 1 mA x 4.7 $k\Omega$) will be obtained when the phototransistor is ON and an output of 0.47 V (i.e., 0.1 mA x 4.7 kΩ) will be obtained when the phototransistor is OFF. Practically, the output voltage of the phototransistor will be more than 4.7 V when the phototransistor is ON and less than 0.47 V when the phototransistor is OFF because the above voltage values are based on the worst light current and leakage current values of the phototransistor. The outputs obtained from the phototransistor are amplified and input to ICs to make practical use of the Photomicrosensor.

Figure 13. Basic Circuit

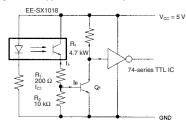
Design of Applied Circuit

The following explains the designing of the applied circuit shown in Figure 15.

The light current (I₁) of the phototransistor flows into R₁ and R₂ when the phototransistor receives the optical beam emitted from the LED. Part of the light current (I,) will flow into the base and emitter of Q1 when the voltage imposed on R2 exceeds the bias voltage (i.e., approximately 0.6 to 0.9 V) imposed between the base and emitter of the transistor (Q1). The light current flowing into the base turns Q1 ON. A current will flow into the collector of Q₁ through R₃ when Q₁ is ON. Then, the electric potential of the collector will drop to a low logic level. The dark current and leakage current of the phototransistor flow when the optical beam emitted from the LED is intercepted. The electric potential of the output of the phototransistor (i.e., (I_D + leakage current) x R₂) is, however, lower than the bias voltage between the base and emitter of Q1. Therefore, no current will flow into the base of Q1 and Q1 will be OFF. The output of Q1 will be at a high level. As shown in Figure 16, when the phototransistor is ON, the phototransistor will be seemingly short-circuited through the base and emitter of the Q1, which is equivalent to a diode, and if the light current (IL) of the phototransistor is large and R1 is not connected to the phototransistor, the light current (IL) will flow into Q1 and the collector dissipation of the phototransistor will be excessively large.


The following items are important when designing the above applied circuit:

The voltage output (i.e., $I_L \times R_2$) of the phototransistor receiving the optical beam emitted from the LED must be much higher than the bias voltage between the base and emitter of Q1.


The voltage output (i.e., (I₀ + leakage current) x R₂) of the phototransistor not receiving the optical beam emitted from the LED must be much lower than the bias voltage between the base and emitter of Q1.

Therefore, it is important to determine the resistance of R₂. Figure 17 shows a practical applied circuit example using the EE-SX1018 Photomicrosensor at a supply voltage (V_{cc}) of 5V to drive a 74-series TTL IC. This applied circuit example uses R₁ and R₂ with appropriate resistance values.

Figure 17. Applied Circuit Example

Calculation of R₂

The resistance of R_2 should be decided using the following so that the appropriate bias voltage ($V_{\text{EE}}(ON)$) between the base and emitter of the transistor (Q_1) to turn Q_1 ON will be obtained.

$$\begin{array}{l} |c_1 \times R_2 > V_{BE(ON)} \\ |c_1 = I_L - I_B \\ \therefore (I_L - I_B) \times R_2 > V_{BE(ON)} \\ \therefore R_2 > \frac{V_{BE(ON)}}{I_L - I_B} \end{array}$$

The bias voltage (V_{ec}(ON)) between the base and emitter of Q, is approximately 0.8 V and the base current (I_{e)} of Q, is approximately 20 mA if Q, is a standard transistor controlling small signals. The estimated worst value of the light current (IL) of the phototransistor is 0.25 mA according to Table 3.

Therefore, the following is obtained.

$$R_2 > \frac{0.8 \text{ V}}{0.25 \text{ mA} - 20 \text{ mA}} = \text{approx. } 3.48 \text{ k}\Omega$$

 $R_{\rm 2}$ must be larger than the above result. Therefore, the actual resistance of $R_{\rm 2}$ must be two to three times as large as the above result. In the above applied circuit example, the resistance of $R_{\rm 2}$ is 10 kg.

Verification of R₂ Value

The resistance of R₂ obtained from the above turns Q, ON. The following explains the way to confirm whether the resistance of R₂ obtained from the above can turns Q, OFF as well. The condition required to turn Q, OFF is obtained from the following.

$$(ID + a) \times R_2 < VBE(OFF)$$

Substitute 10 k Ω for R₂, 4 mA for the dark current (ID) according to Table 3, and 10 μA for the leakage current on the assumption that the leakage current is 10 μA in formula 3. The following is obtained.

$$\begin{split} (I_D + a) \times R_2 > V_{BE(ON)} \\ (4 \; \mu A + 10 \; \mu A) \times 10 \; k\Omega &= 0.140 \; V \\ V_{BE(OFF)} &= 0.4 \; V \\ \therefore 0.140 \; V < 0.4 \; V \end{split}$$

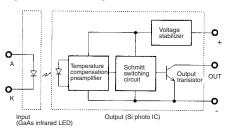
The above result verifies that the resistance of $\mathsf{R}_{\scriptscriptstyle 2}$ satisfies the condition required to turn $\mathsf{Q}_{\scriptscriptstyle 1}$ OFF.

If the appropriateness of the resistance of R_2 has been verified, the design of the circuit is almost complete.

\mathbf{R}_1

As shown in Figure 16, when the phototransistor is ON, the phototransistor will be seemingly short-circuited through the base and emitter of the Q_n, and if the light current (l_i) of the phototransistor is large and R_i is not connected to the phototransistor, the light current will flow into Q_i and the collector dissipation of the phototransistor will be excessively large. The resistance of R_i depends on the maximum permissible collector dissipation (PC) of the phototransistor, which can be obtained from the datasheet of the Photomicrosensor. The resistance of R_i of a phototransistor is several hundred ohms. In the above applied circuit example, the resistance of R_i is 200 Ω .

If the resistance of $\mathsf{R}_{\scriptscriptstyle 1}$ is determined, the design of the circuit is complete.


It is important to connect a transistor to the phototransistor incorporated by the Photomicrosensor to amplify the output of the phototransistor, which increases the reliability and stability of the Photomicrosensor. Such reliability and stability of the Photomicrosensor cannot be achieved if the output of the phototransistor is not amplified. The response speed and other performance characteristics of the circuit shown in Figure 15 are far superior to those of the circuit shown in Figure 15 are far superior to those of the circuit shown in Figure 16 are far superior to those of the circuit shown in Figure 16 are far superior to the date (i.e., load resistance) of the Photomicrosensor is determined by R, the resistance of which is comparatively small. Recently, Photomicrosensors that have photo IC amplifier circuits are increasing in number because they are easy to use and make it possible to design systems using Photomicrosensors without problem.

Design of Systems Incorporating Photomicrosensors (2)

PHOTO IC OUTPUT

Figure 18 shows the circuit configuration of the EE-SX301 or EE-SX401 Photomicrosensor incorporating a photo IC output circuit. The following explains the structure of a typical Photomicrosensor with a photo IC output circuit.

Figure 18. Circuit Configuration

LED Forward Current (I_F) Supply Circuit

The LED in the above circuitry is an independent component, to which an appropriate current must be supplied from an external power supply. This is the most important item required by the Photomicrosensor.

It is necessary to determine the appropriate forward current (l_r) of the LED that turns the photo IC ON. If the appropriate forward current is determined, the Photomicrosensor can be easily used by simply supplying power to the detector circuitry (i.e., the photo IC). Refer to the datasheet of the Photomicrosensor to find the current of the LED turning the photo IC ON. Table 4 is an extract of the datasheet of the EE-SX301/EE-SX401.

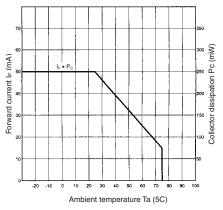
Table 4. A	bstract of	Characteristics
------------	------------	-----------------

Item	Symbol	EE-SX301, -SX401	
		Value	Condition
LED current when output is turned OFF (EE-SX301)	IFTOFF	8 mA max.	V _{cc} = 4.5 to 16 V Ta = 25°C
LED current when output is turned ON (EE-SX401)	IFTON		

To design systems incorporating EE-SX301 or EE-SX401 Photomicrosensors, the following are important points.

- A forward current equivalent to or exceeding the IFTOFF value must flow into the LED incorporated by each EE-SX301 Photomicrosensors.
- A forward current equivalent to or exceeding the IFTON value must flow into the LED incorporated by the EE-SX401 Photomicrosensors.

The IFTON value of the EE-SX301 is 8 mA maximum and so is the IFON value of the EE-SX401. The forward current (I_F) of LED incorporated by the EE-SX301 in actual operation must be 8 mA or more and so must the actual forward current of (I_F) the LED incorporated by the EE-SX401 in actual operation. The actual forward currents of the LEDs incorporated by the EE-SX301 and EE-SX401 are limited by their absolute maximum forward currents respectively. The upper limit of the actual forward current of the LED incorporated by the EE-SX301 and that of the LED incorporated by the EE-SX401 must be decided according Figure 19, which shows the temperature characteristics of the EE-SX301 and EE-SX401. The forward current (I_F) of the EE-SX301 must be as large as possible within the absolute maximum forward current and maximum ambient temperature shown in Figure 19 and so must be the forward current (I_e) of the EE-SX401. The forward current (I_E) of the EE-SX301 or that of the EE-SX401 must not be close to 8 mA, otherwise the photo IC of the EE-SX301 or that of the EE-SX401 may not operate if there is any ambient temperature change, secular change that reduces the optical output of the LED, or dust sticking to the LED. The forward current (I_F) values of the EE-SX301 and the EE-SX401 in actual operation must be twice as large as the $I_{\mbox{\tiny FOFF}}$ values of the EE-SX301 and EE-SX401 respectively. Figure 20 shows the basic circuit of a typical Photomicrosensor with a photo IC output circuit.


If the Photomicrosensor with a photo IC output circuit is used to drive a relay, be sure to connect a reverse voltage absorption diode (D) to the relay in parallel as shown in Figure 21.

Technical Information – Photomicrosensors

Detector Circuit

Supply a voltage within the absolute maximum supply voltage to the positive and negative terminals of the photo IC circuit shown in Figure 18 and obtain a current within the IOUT value of the output transistor incorporated by the photo IC circuit.

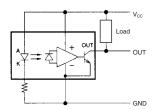
Figure 19. Forward Current vs. Ambient Tempera ture Characteristics (EE-SX301/-SX401)

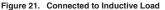
Precautions

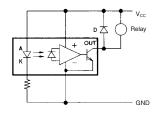
The following provides the instructions required for the operation of Photomicrosensors.

Transmissive Photomicrosensor Incorporating Phototransistor Output Circuit

When using a transmissive Photomicrosensor to sense the following objects, make sure that the transmissive Photomicrosensor operates properly.


- · Highly permeable objects such as paper, film, and plastic
- Objects smaller than the size of the optical beam emitted by the LED or the size of the aperture of the detector.


The above objects do not fully intercept the optical beam emitted by the LED. Therefore, some part of the optical beam, which is considered noise, reaches the detector and a current flows from the phototransistor incorporated by the detector. Before sensing such type of objects, it is necessary to measure the light currents of the phototransistor with and without an object to make sure that the transmissive Photomicrosensor can sense objects without being interfered by noise. If the light current of the phototransistor sensing any one of the objects is $I_c(N)$ and that of the phototransistor sensing none of the objects is obtained noise ratio of the phototransistor due to the object is obtained from the following.


$S/N = I_L(S)/I_L(N)$

The light current (I_i) of the phototransistor varies with the ambient temperature and secular changes. Therefore, if the signal-noise ratio of the phototransistor is 4 maximum, it is necessary to pay utmost attention to the circuit connected to the transmissive Photomicrosensor so that the transmissive Photomicrosensor can sense the object without problem. The light currents of phototransistors are different to one another. Therefore, when multiple transmissive Photomicrosensors as required, a variable resistor must be connected to each transmissive Photomicrosensor as shown in Figure 22 if the light currents of the phototransistors greatly differ from one another.

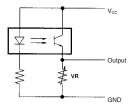

Figure 20. Basic Circuit

Figure 22. Sensitivity Adjustment

The optical beam of the emitter and the aperture of the detector must be as narrow as possible. An aperture each can be attached to the emitter and detector to make the optical beam of the emitter and the aperture of the detector narrower. If apertures are attached to both the emitter and detector, however, the light current (IL) of the phototransistor incorporated by the detector will decrease. It is desirable to attach apertures to both the emitter and detector. If an aperture is attached to the detector only, the transmissive Photomicrosensor will have trouble sensing the above objects when

Figure 23. Aperture Example

Technical Information – Photomicrosensors

When using the transmissive Photomicrosensor to sense any object that vibrates, moves slowly, or has highly reflective edges make sure to connect a proper circuit which processes the output of the transmissive Photomicrosensor so that the transmissive Photomicrosensor can operate properly, otherwise the transmissive Photomicrosensor may have a chattering output signal as shown in Figure 24. If this signal is input to a counter, the counter will have a counting error or operate improperly. To protect against this, connect a 0.01- to 0.02-µF capacitor to the circuit as shown in Figure 25 or connect a Schmitt trigger circuit to the circuit as shown in Figure 26.

Figure 24. Chattering Output Signal

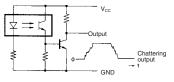
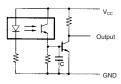
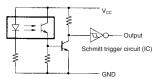




Figure 25. Chattering Prevention (1)

Figure 26. Chattering Prevention (2)

Reflective Photomicrosensor Incorporating Phototransistor Output Circuit

When using a reflective Photomicrosensor to sense objects, pay attention to the following so that the reflective Photomicrosensor operates properly.

- · External light interference
- · Background condition of sensing objects
- · Output level of the LED

The reflective Photomicrosensor incorporates a detector element in the direction shown in Figure 27. Therefore, it is apt to be affected by external light interference. The reflective Photomicrosensor, therefore, incorporates a filter to intercept any light, the wavelength of which is shorter than a certain wavelength, to prevent external light interference. The filter does not, however, perfectly intercept the light. Refer to Figure 28 for the light interception characteristics of filters. A location with minimal external light interference is best suited for the reflective Photomicrosensor. Figure 27. Configuration of Reflective Photomicrosensor

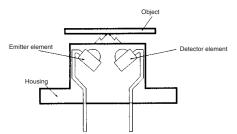


Figure 28. Light Interception Characteristics of Filters

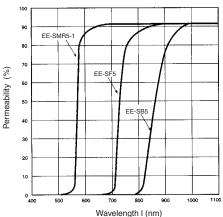
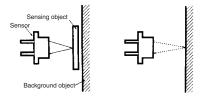



Figure 29. Influence of Background Object

With regard to the background conditions, the following description is based on the assumption that the background is totally dark.

Figure 29 shows that the optical beam emitted from the LED incorporated by a reflective Photomicrosensor is reflected by a sensing object and background object. The optical beam reflected by the background object and received by the phototransistor incorporated by the detector is considered noise that lowers the signal-noise ratio of the phototransistor. If any reflective Photomicrosensor is used to sense paper passing through the sensing area of the reflective Photomicrosensor on condition that there is a stainless steel or zinc-plated object behind the paper, the light current (IL(N)) of the phototransistor not sensing the paper may be larger than the light current (IL(S)) of phototransistor sensing the paper, in which case remove the background object, make a hole larger than the area of the sensor surface in the background object as shown in Figure 30, coat the surface of the background object with black lusterless paint, or roughen the surface of the background. Most malfunctions of a reflective Photomicrosensor are caused by an object located behind the sensing objects of the reflective Photomicrosensor.

OMRON

Unlike the output (i.e., I_i) of any transmissive Photomicrosensor, the light current (I_i) of a reflective Photomicrosensor greatly varies according to sensing object type, sensing distance, and sensing object size.

Figure 30. Example of Countermeasure

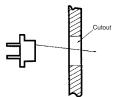
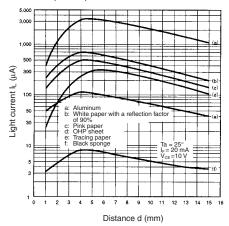
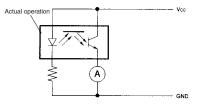



Figure 31. Sensing Distance Characteristics (EE-SF5)

The light current (I₁) of the phototransistor incorporated by the transmissive Photomicrosensor is output when there is no sensing object in the sensing groove of the transmissive Photomicrosensor. On the other hand, the light current (I,) of the phototransistor incorporated by the reflective Photomicrosensor is output when there is a standard object specified by OMRON located in the standard sensing distance of the reflective Photomicrosensor. The light current (I,) of the phototransistor incorporated by the reflective Photomicrosensor varies when the reflective Photomicrosensor senses any other type of sensing object located at a sensing distance other than the standard sensing distance. Figure 31 shows how the output of the phototransistor incorporated by the EE-SF5(-B) varies according to varieties of sensing objects and sensing distances. Before using the EE-SF5(-B) to sense any other type of sensing objects, measure the light currents of the phototransistor in actual operation with and without one of the sensing objects as shown in Figure 32. After measuring the light currents, calculate the signal-noise ratio of the EE-SF5(-B) due to the sensing object to make sure if the sensing objects can be sensed smoothly. The light current of the reflective Photomicrosensor is, however, several tens to hundreds of microamperes. This means that the absolute signal levels of the reflective Photomicrosensor are low. Even if the reflective Photomicrosensor in operation is not interfered by external light, the dark current (I_D) and leakage current (ILEAK) of the reflective Photomicrosensor, which are considered noise, may amount to several to ten-odd microamperes due to a rise in the ambient temperature. This noise cannot be ignored. As a result, the signal-noise ratio of the reflective Photomicrosensor will be extremely low if the reflective Photomicrosensor senses any object with a low reflection ratio.


Pay utmost attention when applying the reflective Photomicrosensor to the sensing of the following.

- · Marked objects (e.g., White objects with a black mark each)
- Minute objects

The above objects can be sensed if the signal-noise ratio of the reflective Photomicrosensor is not too low.

The reflective Photomicrosensor must be used with great care, otherwise it will not operate properly.

Figure 32. Output Current Measurement

Precautions

Correct Use

Use the product within the rated voltage range.

Applying voltages beyond the rated voltage ranges may result in damage or malfunction to the product.

Wire the product correctly and be careful with the power supply polarities.

Incorrect wiring may result in damage or malfunction to the product.

Connect the loads to the power supply. Do not short-circuit the loads.

Short-circuiting the loads may result in damage or malfunction to the product.

Structure and Materials

The emitter and detector elements of conventional Photomicrosensors are fixed with transparent epoxy resin and the main bodies are made of polycarbonate. Unlike ICs and transistors, which are covered with black epoxy resin, Photomicrosensors are subject to the following restrictions.

1. Low Heat Resistivity

The storage temperature of standard ICs and transistors is approximately 150°C. On the other hand, the storage temperature of highly resistant Photomicrosensors is 100°C maximum. The heat resistance of the EE-SY169 Series which use ABS resin in the case, is particularly low (80°C maximum).

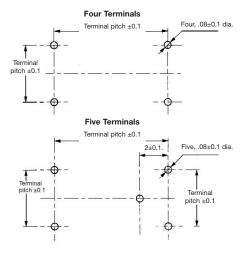
2. Low Mechanical Strength

Black epoxy resin, which is used for the main bodies of ICs and transistors, contains additive agents including glass fibre to increase the heat resistivity and mechanical strength of the main bodies. Materials with additive agents cannot be used for the bodies of Photomicrosensors because Photomicrosensors must maintain good optical permeability. Unlike ICs and transistors, Photomicrosensors must be handled with utmost care because Photomicrosensors are not as heat or mechanically resistant as ICs and transistors. No excessive force must be imposed on the lead wires of Photomicrosensors.

Mounting

Screw Mounting

If Photomicrosensors have screw mounting holes, the Photomicrosensors can be mounted with screws. Unless otherwise specified, refer to the following when tightening the screws.


Hole diameter	Screw size	Tightening torque
1.5 dia.	M1.4	0.20 N • m
2.1 dia.	M2	0.34 N • m
3.2 dia.	M3	0.54 N • m
4.2 dia.	M4	0.54 N • m

Read the following before tightening the screws.

- The use of a torque screwdriver is recommended to tighten each of the screws so that the screws can be tightened to the tightening torque required.
- The use of a screw with a spring washer and flat washer for the mounting holes of a Photomicrosensor is recommended. If a screw with a spring washer but without a flat washer is used for any mounting hole, the part around the mounting hole may crack.
- Do not mount Photomicrosensors to plates stained with machining oil, otherwise the machining oil may cause cracks on the Photomicrosensors.
- 4. Do not impose excessive forces on Photomicrosensors mounted to PCBs. Make sure that no continuous or instantaneous external force exceeding 500 g (4.9 N) is imposed on any lead wire of the Photomicrosensors.

PCB Mounting Holes

Unless otherwise specified, the PCB to which a Photomicrosensor is mounted must have the following mounting holes.

Soldering

Lead Wires

Make sure to solder the lead wires of Photomicrosensors so that no excessive force will be imposed on the lead wires. If an excessive forces is likely to be imposed on the lead wires, hold the bases of the lead wires.

Soldering Temperature

1. Manual Soldering

Unless otherwise specified, the lead wires of Photomicrosensors can be soldered manually under the following conditions.

Soldering temperature:	350°C max. (The temperature of the tip of a 30-W soldering iron is approximately 320°C when the soldering iron is heated up.)
Soldering time:	3 s max.
Soldering position:	At least 1.5 mm away from the bases of the lead wires.

The temperature of the tip of any soldering iron depends on the shape of the tip. Check the temperature with a thermometer before soldering the lead wires. A highly resistive soldering iron incorporating a ceramic heater is recommended for soldering the lead wires.

The soldering temperature is specified as the temperature applied to the lead terminals. Do not subject the cases to temperatures higher than the maximum storage temperature. It is also possible for the sensor case to melt due to residual heat of the PBC. When using a PBC with a high thermal capacity (e.g., those using fibreglass reinforced epoxy substances), confirm that the case is not deformed and install cooling devices as required to prevent distortion. Particular care is required for the EE-SY 169 Series or the EE-SY201/202, which use ABS resin in the case.

Do not use non-washable flux when soldering EE-SA-series Photomicrosensors, otherwise the Photomicrosensors will have operational problems. For other Photomicrosensors, check the case materials and optical characteristics carefully to be sure that residual flux does not adversely affect them.

2. Dip Soldering

The lead wires of Photomicrosensors can be dip-soldered under the following conditions unless otherwise specified.

Preheating temperature:	Must not exceed the storage
	temperature of the
	Photomicrosensors.
Soldering temperature:	260°C.
Soldering time:	10 s max.
Soldering position:	At least 0.3 mm away from the bases of the housing.

Do not use non-washable flux when soldering EE-SA-series Photomicrosensors, otherwise the Photomicrosensors will have operational problems.

3. Reflow Soldering

The reflow soldering of Photomicrosensors is not possible except for the EE-SX1107, -SX1108, -SX1109, SX11331, SX4134, EE-SY125 and EE-SY193. The reflow soldering of these products must be performed carefully under the conditions specified in the datasheets of these products, respectively. Before performing the reflow soldering of these products, make sure that the reflow soldering equipment satisfies the conditions.

Compared to general ICs, optical devices have a lower resistance to heat. This means the reflow temperature must be set to a lower temperature. Observe the temperature provides provided in the specifications when mounting optical devices.

4. External Forces Immediately Following Soldering

The heat resistance and mechanical strength of Photomicrosensors are lower than those of ICs or transistors due to their physical properties. Care must thus be exercised immediately after soldering (particularly for dip soldering) so that external forces are not applied to the Photomicrosensors.

External Forces

The heat resistivity and mechanical strength of Photomicrosensors are lower than those of ICs or transistors. Do not to impose external force on Photomicrosensors immediately after the Photomicrosensors are soldered. Especially, do not impose external force on Photomicrosensors immediately after the Photomicrosensors are dipsoldered.

Cleaning Precautions

Cleaning

Photomicrosensors except the EE-SA105 can be cleaned subject to the following restrictions.

1. Types of Detergent

Polycarbonate is used for the bodies of most Photomicrosensors. Some types of detergent dissolve or crack polycarbonate. Before cleaning Photomicrosensors, refer to the following results of experiments, which indicate what types of detergent are suitable for cleaning Photomicrosensors other than the EE-SA105.

Observe the law and prevent against any environmental damage when using any detergent.

Results of Experiments

Ethyl alcohol:	ОК
Methyl alcohol:	OK
Isopropyl alcohol:	OK
Chlorofluorocarbon:	Depends on the additive agents (see note)
Trichlene:	NG
Acetone:	NG
Methylbenzene:	NG
Water (hot water):	The lead wires corrode depending on the conditions

2. Cleaning Method

Unless otherwise specified, Photomicrosensors other than the EE-SA105 and EE-SA113 can be cleaned under the following conditions. Do not apply an unclean detergent to the Photomicrosensors.

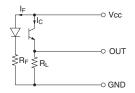
DIP cleaning: Ultrasonic cleaning:	OK Depends on the equipment and the PCB size. Before cleaning Photomicrosensors, conduct a cleaning test with a single Photomicrosensor and make sure that the Photomicrosensor has no broken lead wires after the Photomicrosensor is cleaned.
Brushing:	The marks on Photomicrosensors may be brushed off. The emitters and detectors of reflective Photomicrosensors may have scratches and deteriorate when they are brushed. Before brushing Photomicrosensors, conduct a brushing test with a single Photomicrosensor and make sure that the Photomicrosensor is not damaged after it is brushed.

Operating and Temperatures

Observe the upper and lower limits of the operating and storage temperature ranges for all devices and do not allow excessive changes in temperature. As explained in the restrictions given in Structure and Materials, elements use clear epoxy resin, giving them less resistance to thermal stress than normal ICs or transistors (which are sealed with black epoxy resin). Refer to reliability test results and design PCBs so that the devices are not subjected to excessive thermal stress.

Even for applications within the operating temperature range, care must also be taken to control the humidity. As explained in the restrictions given in Structure and Materials, elements use clear epoxy resin, giving them less resistance to humidity than normal ICs or transistors (which are sealed with black epoxy resin). Refer to reliability test results and design PCBs so that the devices are not subjected to excessive thermal stress. Photomicrosensors are designed for application under normal humidities. When using them in humidified or dehumidified, high-humidity or low-humidity, environments, test performance sufficiently for the application.

LED Drive Currents


Photomicrosensors consist of LEDs and light detectors. Generally speaking, temperal changes occur to LEDs when power is supplied to them (i.e., the amount of light emitted diminishes). With less light, the photoelectric current is reduced for a sensor with a phototransistor output or the threshold current is increased for a sensor with a photo-IC output. Design circuits with sufficient consideration to the decline in the emitted light level. The reduction in emitted light is far greater for red LEDs than for infrared LEDs. Also, with red LEDs that contain aluminum, aluminum oxide will form if they are powered under high humidities, calling for a greater need for consideration of the decline in the emitted light level.

Light Interceptors

Select a material for the light interceptor with superior interception properties. If a material with inferior light interception properties, such as a plastic that is not black, is used, light may penetrate the interceptor and cause malfunction. With Photomicrosensors, most of which use infrared LEDs, a material that appears black to the human eye (i.e., in the visible light range) may be transparent to infrared light. Select materials carefully.

Guideline for Light Interceptors

When measuring the light interception properties of the light interceptor, use 0.1% maximum light transmission as a guideline.

CRITERIA

Where,

 $I_{\mbox{\tiny L1}}$ is the IL for light reception

 $I_{\scriptscriptstyle L2}$ is the IL for light interception by the intercepter

 V_{TH} is the threshold voltage

 $I_{\scriptscriptstyle F1}$ is the $I_{\scriptscriptstyle F}$ for measurement of $I_{\scriptscriptstyle L}$ given in product specifications

 I_{F2} is the IF in actual appliction (= (V_{CC} - V_F)/R_F = (V_{CC} - 1.2)/R_F)

 I_{LMAX} is the standard upper limit of the optical current I_{L}

Then,

Light transmission = $I_{L2}/I_{L1} = \alpha$

Here there should be no problems if the following equation is satified.

 $\mathsf{V}_{\mathsf{TH}} \geq (\mathsf{I}_{\mathsf{F2}}/\mathsf{I}_{\mathsf{F1}}) \ge \mathsf{I}_{\mathsf{LMAX}} \ge \mathsf{R}_{\mathsf{L}} \ge \alpha$

Caution is required, however, because there are inconsistencies in light transmission.

Reflectors

The reflectors for most Photomicrosensors are standardized to white paper with a reflection ratio of 90%. Design the system to allow for any differences in the reflection ratio of the detection object. With Photomicrosensors, most of which use infrared LEDs, a material that appears black to the human eye (i.e., in the visible light range) may have a higher reflection ratio. Select materials carefully. Concretely, marks made with dye-based inks or marks made with petrolium-based magic markers (felt pens) can have the same reflection ratio of 90%. Paper, however, disperses light relatively easily, reducing the effect of the detection angle. Materials with mirrored surfaces, on the other hand, show abrupt changes in angle characteristics. Check the

The output from most Photomicrosensors is determined at a specified distance. Characteristics will vary with the distance. Carefully check characteristics at the specific distance for the application.

Output Stabilisation Time

Photomicrosensors with photo-IC outputs require 100 ms for the internal IC to stablize. Set the system so that the output is not read for 100 ms after the power supply is turned ON. Also be careful if the power supply is turned OFF in the application to save energy when the Photomicrosensor is not used.

When using a Photomicrosensor with a phototransistor output outside of the saturation region, stabilisation time is required to achieve thermal balance. Care is required when using a variable resistor or other adjustment.

Mounting Type

Page

Through-hole

780

Through-hole

783

Surface Mount

749

Through-hole

786

Model EE-SX1107 EE-SX1018 EE-SX1103 EE-SX1105 EE-SX1108 Transmissive slot width 3mm Dimensions (LxWxH) 3.4 x 3 x 3 8 x 4 x 6 5 x 4.2 x 5.2 4.9 x 2.6 x 3.3 5 x 4 x 4 Sensing method Transmissive Transmissive Transmissive Transmissive Transmissive Sensing Distance 2mm 1mm 2mm 2mm 2mm Aperture Size 0.15mm 0.5mm 0.4mm 0.4mm 0.3mm 950nm Emitter Wavelength 940nm 940nm 950nm 940nm Mounting Type Through-hole Surface Mount Surface Mount Through-hole Through-hole Page 749 757 760 763 749 Model EE-SX1131 EE-SX4134 EE-SX493 EE-SX1055 EE-SX1046 Transmissive slot Transmissive slot width 3mm width 3mm - < 5mm Dimensions (LxWxH) 5 x 4 x 4 5 x 4 x 4 11 x 8 x 9.5 8.9 x 4 x 5.4 10 x 6.5 X 5 Sensing method Transmissive Transmissive Transmissive Transmissive Transmissive Sensing Distance 2mm 2mm 2mm 2.8mm 3mm Aperture Size 0.3mm 0.3mm 0.2mm 0.5mm 0.5mm Emitter Wavelength 940nm 940nm 940nm 940nm 920nm Mounting Type Surface Mount Surface Mount Through-hole Through-hole Through-hole Page 749 766 771 774 777 Model EE-SX1082 EE-SX1106 EE-SX1109 **FF-SX199** EE-SX398/498 Transmissive slot width 3mm - < 5mm Dimensions (LxWxH) 10 x 6.5 x 5.2 6.4 x 4.2 x 5.4 6 x 4 x 5 12.2 x 5 x 10 12.2 x 5 x 10 Sensing method Transmissive Transmissive Transmissive Transmissive Transmissive Sensing Distance 3mm 3mm 3mm 3mm 3mm Aperture Size 0.2mm 0.4mm 0.5mm 0.5mm 0.5mm Emitter Wavelength 920nm 950nm 940nm 940nm 940nm

Through-hole

789

OMRON

Model EE-SV3 EE-SX1071 EE-SX1096 EE-SX1088 EE-SH3 Transmissive slot width 3mm - < 5mm Dimensions (LxWxH) 19 x 15.1 x 10.2 13.6 x 6.2 x 10.2 25 x 6 x 10 25 x 6 x 10 25.4 x 6.2 x 10.2 Sensing method Transmissive Transmissive Transmissive Transmissive Transmissive Sensing Distance 3.4mm 3.4mm 3.4mm 3.4mm 3.4mm Aperture Size 0.2/0.5/1.0mm 0.5mm 0.5mm 0.5mm 0.2/0.5/1.0mm Emitter Wavelength 940nm 940nm 940nm 940nm 940nm Mounting Type Through-hole Lead Wires Through-hole Through-hole Through-hole Page 792 795 798 801 804 Model EE-SX3088/4088 EE-SG3/SG3B EE-SX1057 EE-SX1128 EE-SX1041 Transmissive slot width 3mm Dimensions (LxWxH) 25 x 6 x 10 13 x 6.3 x 8.6 13.5 x 5.2 x 9.3 25.4 x 6.3 x 11.5 14 x 6 x 10 Sensing method Transmissive Transmissive Transmissive Transmissive Transmissive Sensing Distance 3.4mm 3.6mm 3.6mm 4.2mm 5mm Aperture Size 0.5mm 2.0mm 2.0mm 0.5mm 0.5mm Emitter Wavelength 940nm 940nm 940nm 940nm 940nm Mounting Type Through-hole Through-hole Through-hole Through-hole Through-hole Page 807 810 813 816 819 Model EE-SX1042 EE-SX1081 EE-SX1235A-P2 EE-SX3009-P1 EE-SX4019-P2 /4009-P1 /4009-P1 Transmissive slot width 5mm - 8mm Dimensions (LxWxH) 14 x 5 x 14.5 $137 \times 5 \times 10$ 27 x 8 x 15.9 34 x 11 x 21 38 x 11 x 21 Sensing method Transmissive Transmissive Transmissive Transmissive Transmissive Sensing Distance 5mm 5mm 5mm 5mm 5mm Aperture Size 0.5mm 0.5mm 0.5mm 0.5mm 0.5mm Emitter Wavelength 940nm 940nm 940nm 940nm 940nm Through-hole Through-hole

Snap-In

828

Screw Mounting

831

Screw Mounting

834

OMRON

Mounting Type

822

825

Model EE-SX3081/4081 EE-SX4235A-P2 EE-SX1070 EE-SX3070/4070 Transmissive slot width 5mm - 8mm Dimensions (LxWxH) 13.7 x 5 x 10 27 x 8 x 15.9 17.7 x 6 x 10 17.7 x 6 x 10 Sensing method Transmissive Transmissive Transmissive Transmissive Sensing Distance 5mm 5mm 8mm 8mm Aperture Size 0.5mm 0.5mm 0.5mm 0.5mm **Emitter Wavelength** 940nm 940nm 940nm 940nm Mounting Type Through-hole Snap-In Through-hole Through-hole Page 837 840 843 846

Model	EE-SX1140 EE-SX461-P11		EE-SY124	EE-SY125
	Transmissive slot	width over 12mm	Reflect	іvе Туре
	5			
Dimensions (LxWxH)	23 x 5 x 16.3	32.5 x 12 x 23.6	4 x 4 x 1.7	4 x 5 x 1.7
Sensing method	Transmissive	Transmissive	Reflective	Reflective
Sensing Distance	14mm	15mm	1mm	1mm
Aperture Size	1.5mm	2.0mm	not applicable	not applicable
Emitter Wavelength	940nm	940nm	940nm	940nm
Mounting Type	Through-hole	Snap-In	Through-hole	Surface Mount
Page	849	852	871	871

Model	EE-SY193	EE-SY171	EE-SY169A/B	EE-SY113
		Reflecti	ve Туре	
	111 4X2			570
Dimensions (LxWxH)	3.4 x 2.7 x 1	15 x 4.2 x 3	12.5 x 6 x 8	15.2 x 6.2 x 6
Sensing method	Reflective	Reflective	Reflective	Reflective
Sensing Distance	1mm	3.5mm	4mm	4.4mm
Aperture Size	not applicable	not applicable	not applicable	not applicable
Emitter Wavelength	940nm	940nm	920nm	940nm
Mounting Type	Surface Mount	Through-hole	Through-hole	Through-hole
Page	875	880	883+886	889

OMRON

Model EE-SY313/413 EE-SF5B EE-SY110 EE-SY310/410 Reflective Type Dimensions (LxWxH) 15.2 x 6.2 x 6 13 x 5.4 x 8 15.2 x 4.6 x 4.8 17 x 4.6 x 4.8 Sensing method Reflective Reflective Reflective Reflective Sensing Distance 4.4mm 5mm 5mm 5mm Aperture Size not applicable not applicable not applicable not applicable **Emitter Wavelength** 940nm 920nm 920nm 940nm Mounting Type Through-hole Through-hole Through-hole Through-hole Page 892 896 899 902 Model EE-SA102 EE-SA103 **EE-SA104** EE-SA107-P2 Actuator Type

OMRON

Dimensions (LxWxH)	17 x 6 x 16.5	9 x 4 x 6	9 x 4 x 9.7	27 x 8 x 21.9
Sensing method	Actuator	Actuator	Actuator	Actuator
Sensing Distance	3mm	3mm	3mm	3.6mm
Aperture Size	0.5mm	0.5mm	0.5mm	0.5mm
Emitter Wavelength	940nm	940nm	940nm	940nm
Mounting Type	Through-hole	Through-hole	Through-hole	Snap-in
Page	856	859	862	865

Model EE-SA407-P2		Z4D-B01	EY3A-1081	EY3A-112
	Actuator Type	Micro Displacement	Multi-beam	
Dimensions (LxWxH)	27 x 8 x 21.9	15 x 35.5 x 20	56.3 x 32 x 15 73 x 32 x 17.3	
Sensing method	Actuator	Micro Displacement	Multi-beam Multi-beam	
Sensing Distance	3.6mm	6.5mm +-1mm	80mm 125mm	
Aperture Size	0.5mm	not applicable	not applicable	not applicable
Emitter Wavelength	940nm	940nm	940nm	940nm
Mounting Type	Snap-in	Screw Mounting	Screw Mounting	Screw Mounting
Page	868	906	910	913

Photomicrosensor-Transmissive – EE-SX1107/1108/1109/1131 OMRON

- Surface mount design, tape and reel packaging facilitate automated PCB.
- Compact size makes these sensors ideal for use in applications with restricted space.
- High-resolution sensing with phototransistor output.
- Dual channel model that is ideal for encoder applications (EE-SX1131).

Ordering Information -

Appearance	Sensing Method	Slot Width	Slot Depth	Sensing Object	Weight	Part No.
	Transmissive	1 mm	2 mm	Opaque 0.15 x 0.6 mm min.	0.05 g	EE-SX1107
	-	2 mm	2.8 mm	Opaque 0.3 x 1.0 mm min.	0.1 g	EE-SX1108
	-	3 mm	3.5 mm	Opaque 0.5 x 1.0 mm min.	0.1 g	EE-SX1109
RE	Dual channel transmissive	2 mm	2.8 mm	Opaque 0.3 x 1.0 mm min.	0.1 g	EE-SX1131

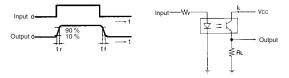
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

	Item		Rated value
Emitter	Forward current	IF	25 mA (see note 1)
	Pulse foward current	I _{FP}	100 mA (see note 2)
	Reverse Voltage	V _R	5 V
Detector	Collector-Emitter voltage	V _{CEO}	20 V
	Emitter-Collector voltage	V _{ECO}	5 V
	Collector current	Ic	20 mA
	Collector dissipation	P _C	75 mW (see note 1)
Ambient temperature	Operating	Topr	-30°C to 85°C
	Storage	Tstg	-40°C to 90°C
	Reflow soldering	Tsol	240°C (see note 3)
	Manual soldering	Tsol	300°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Duty: 1/100; Pulse width: 0.1 ms.


3. Complete soldering within 10 seconds for reflow soldering and within 3 seconds for manual soldering.

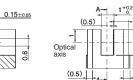
■ Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.1 V typ., 1.3 V max.	I _F = 5 mA
	Reverse current	l _R	10 µA max.	$V_R = 5 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	50 μA min., 150 μA typ., 500 μA max.	$I_F = 5$ mA, $V_{CE} = 5$ V
	Dark current	ID	100 nA max.	V_{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F = 20$ mA, $I_L = 50$ μ A
	Peak spectral sensitivity wavelength	λ _P	900 nm typ.	-
Rising time		tr	10 µs typ.	V_{CC} = 5 V, R_L = 1 k Ω , I_L = 100 μA
Falling time		tf	10 µs typ.	$V_{CC}=5~V,~R_L=1~k\Omega,~I_L=100~\mu A$

Note: The following figures show the rising time (tr) and falling time (tf).1

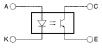
Response Time Measurement Circuit

Dimensions

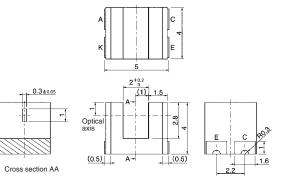

Note: All units are in millimetres unless stated.

EE-SX1107

1.2


(0.5)

Cross section AA



Recommended Soldering Pattern

			0.4
			1.2
1.8	1.8	1.8	

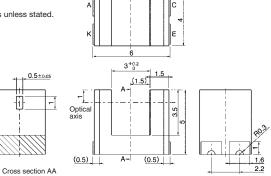
EE-SX1108

Internal Circuit

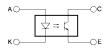
Recommended Soldering Pattern

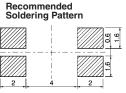
	0.6
	2

Unless otherwise stated the tolerances are ±0.15mm.

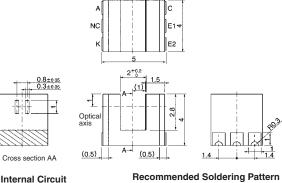

OMRON

OMRON


Dimensions


Note: All units are in millimetres unless stated.

EE-SX1109



Internal Circuit

EE-SX1131

	+-		, -T
			-
. 2	3	2 d	blol

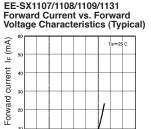
Unless otherwise stated the tolerances are ±0.15mm.

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter
E1	Emitter 1
E2	Emitter 2

AC

NCO

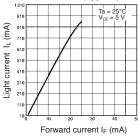
ĸО

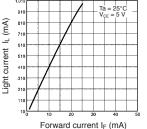


-OE1

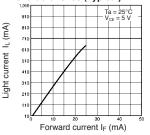
 \sim ⇉

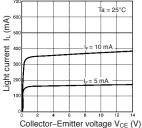
Engineering Data

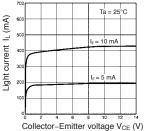

EE-SX1107/1108/1109/1131 Forward Current vs. Collector **Dissipation Temperature Rating** Collector dissipation Pc (mW) (mA) 50 00 Forward current 40 30 20 10 0 -40 -20 0 20 40 Ambient temperature Ta (°C)

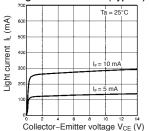

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Forward voltage V_F (V)

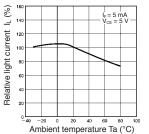
°0


EE-SX1107 Light Current vs. Forward Current Characteristics (Typical)

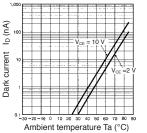

EE-SX1108/1131 Light Current vs. Forward Current Characteristics (Typical)


EE-SX1109 Light Current vs. Forward Current Characteristics (Typical)

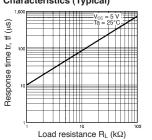

EE-SX1107 Light Current vs. Collector-Emitter Voltage Characteristics (Typical)


EE-SX1108/1131 Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

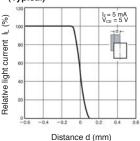
EE-SX1109 Light Current vs. Collector–Emitter Voltage Characteristics (Typical)

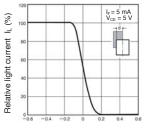


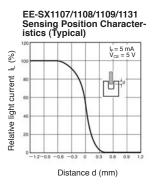
EE-SX1107/1108/1109/1131 Relative Light Current vs. Ambient Temperature Characteristics (Typical)

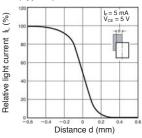


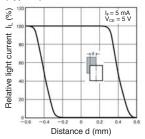
Engineering Data


EE-SX1107/1108/1109/1131 Dark Current vs. Ambient Temperature Characteristics (Typical)


EE-SX1107/1108/1109/1131 Response Time vs. Load Resistance Characteristics (Typical)

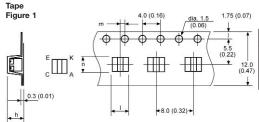

EE-SX1107 Sensing Position Characteristics (Typical)


EE-SX1108 Sensing Position Characteristics (Typical)

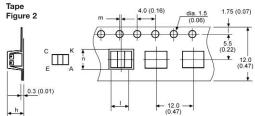

Distance d (mm)

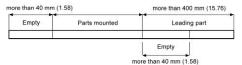
EE-SX1109 Sensing Position Characteristics (Typical)

EE-SX1131 Sensing Position Characteristics (Typical)


OMRON

■ Tape and Reel – EE-SX1107, EE-SX1108, EE-SX1109 & EE-SX1131


Unit: mm (inch).



2	Part No.	h	i	т	п
	EE-SX1107	3.2 (013)	3.6 (014)	0.9 (0.04)	3.2 (013)
0 7)	EE-SX1108	4.2 (0.17)	5.2 (0.20)	0.25 (0.01)	4.2 (0.17)
	EE-SX1131	4.2 (0.17)	5.2 (0.20)	0.25 (0.01)	4.2 (0.17)

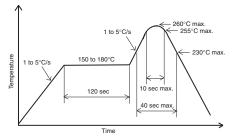
	Part No.	h	i	т	п
1	EE-SX1109	5.2 (0.20)	6.2 (0.24)	0.25 (0.01)	4.2 (0.17)

Tape configuration

Part No.	Pieces per reel	
EE-SX1107	2000	
EE-SX1108/1131	2000	
EE-SX1109	1000	

Precautions

Soldering Information


Reflow soldering

The following soldering paste is recommended:

Melting temperature: 216 to 220°C

Composition: Sn 3.5 Ag, 0.75 Cu

- The recommended thickness of the metal mask for screen printing is between 0.2 and 0.25 mm.
- Set the reflow oven so that the temperature profile shown in the following chart is obtained for the upper surface of the product being soldered.

Manual soldering

- Use "Sn 60" (60% tin and 40% lead) or solder with silver content.
- Use a soldering iron of less than 25W, and keep the temperature of the iron tip at 350°C or below.
- · Solder each point for a maximum of three seconds.
- After soldering, allow the product to return to room temperature before handling it.

Storage

To protect the product from the effects of humidity until the package is opened, dry-box storage is recommended. If this is not possible, store the product under the following conditions:

Temperature: 10 to 30°C

Humidity: 60% max.

The product is packed in a humidity-proof envelope. Reflow soldering must be done within 48 hours after opening the envelope, during which time the product must be stored under 30°C at 80% maximum humidity.

If it is necessary to store the product after opening the envelope, use dry-box storage or reseal the envelope.

Baking

If a product has remained packed in a humidity-proof envelope for six months or more, or if more than 48 hours have lapsed since the envelope was opened, bake the product under the following conditions before use:

> Reel: 60°C for 24 hours or more Bulk: 80°C for 4 hours or more

ALL DIMENSIONS SHOWN ARE IN MILLIMETRES.

To convert millimetres into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

Photomicrosensor-Transmissive – EE-SX1018

Features

- Compact model with a 2-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications -

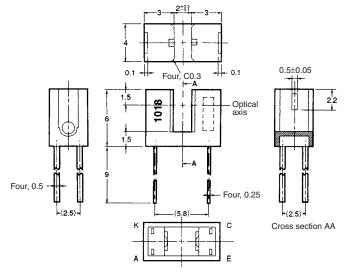
■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

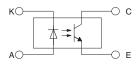
Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is10 μs maximum with a frequency of 100Hz.

3. Complete soldering within 10 seconds.


■ Electrical and Optical Characteristics (Ta = 25°C)

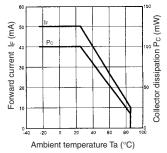
Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	l <u>i</u>	0.5 mA min., 14 mA max.	$I_F=20\ mA,\ V_{CE}=10\ V$
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 10 \text{ V}, 0 \ell x$
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F=20~mA,~I_L=0.1~mA$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CF} = 10 \text{ V}$
Rising time		tr	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA


OMRON

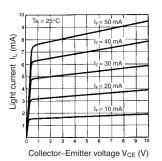
Dimensions

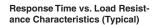
Note: All units are in millimetres unless stated.

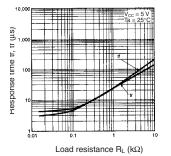
Internal Circuit

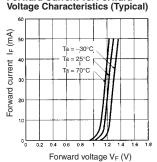

Unless otherwise specified, the tolerances are as shown below.

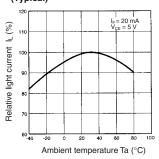
Terminal No.	Name
A	Anode
К	Cathode
С	Collecter
E	Emitter

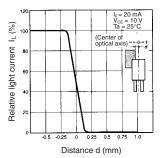

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65


Engineering Data

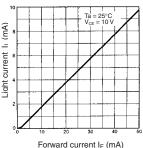

Forward Current vs. Collector Dissipation Temperature Rating

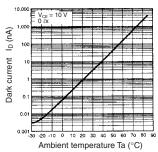


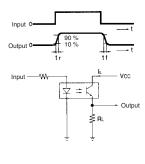




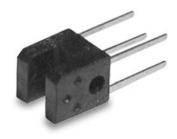
Forward Current vs. Forward


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)


Response Time Measurement Circuit

Photomicrosensor-Transmissive – EE-SX1103

Features

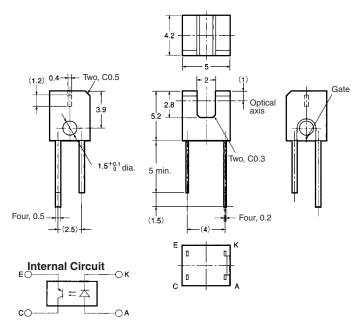
- Ultra-compact with a sensor width of 5 mm and a slot width of 2 mm.
- PCB mounting type.
- High resolution with a 0.4-mm-wide aperture.

Specifications ———

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	-
	Reverse Voltage	V _R	5 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	4.5 V
	Collector current	lc	30 mA
	Collector dissipation	Pc	80 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature	Soldering temperature		260°C (see note 2)

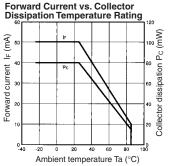
Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.


2. Complete soldering within 3 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

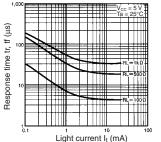
Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.3 V typ., 1.6 V max.	I _F = 50 mA
	Reverse current	l _R	10 µA max.	$V_R = 5 V$
	Peak emission wavelength	λ _P	950 nm typ.	I _F = 50 mA
Detector	Light current	IL.	0.5 mA	$I_{F} = 20 \text{ mA}, V_{CE} = 5 \text{ V}$
	Dark current	ID	500 nA max.	$V_{CE} = 10 \text{ V}, 0 \ell x$
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.4 V max.	$I_F = 20$ mA, $I_L = 0.3$ mA
	Peak spectral sensitivity wavelength	λ _P	800 nm typ.	V _{CE} = 5 V
Rising time		tr	10 µs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 20 mA
Falling time		tf	10 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 20 mA

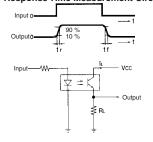
Dimensions

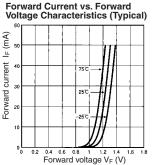

Note: All units are in millimetres unless stated.

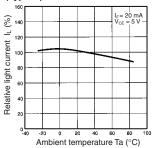

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

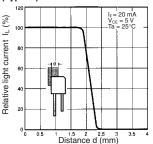
Unless otherwise stated the tolerances are ± 0.2 mm.

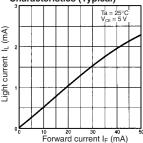

Engineering Data

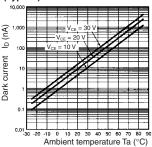


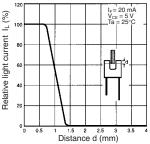

Response Time vs. Light Current Characteristics (Typical)


Response Time Measurement Circuit


CAT. No. E905-E2-01


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient **Temperature Characteristics** (Typical)

Sensing Position Characteristics (Typical)

762

Photomicrosensor-Transmissive – EE-SX1105

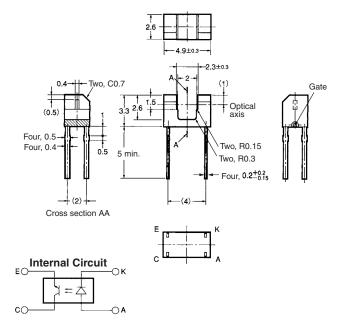
Features

- Ultra-compact with a sensor width of 4.9 mm and a slot width of 2 mm.
- Low-height of 3.3 mm.
- PCB mounting type.
- High resolution with a 0.4-mm-wide aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

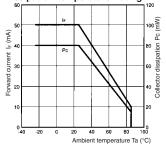
Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	-
	Reverse Voltage	V _R	5 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	4.5 V
	Collector current	Ic	30 mA
	Collector dissipation	Pc	80 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

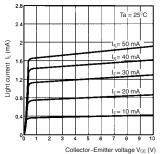

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Complete soldering within 3 seconds.

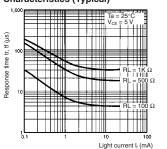
Electrical and Optical Characteristics (Ta = 25°C)

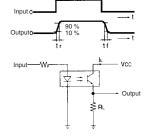
Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.3 V typ., 1.6 V max.	$I_F = 50 \text{ mA}$
	Reverse current	I _R	10 µA max.	$V_R = 5 V$
	Peak emission wavelength	λ _P	950 nm typ.	$I_F = 50 \text{ mA}$
Detector	Light current	IL.	0.2 mA min.	I _F = 20 mA, V _{CE} = 5 V
	Dark current	ID	500 nA max.	V _{CE} = 10 V, 0ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.4 V max.	$I_F = 20 \text{ mA}, I_L = 0.1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	800 nm typ.	$V_{CE} = 5 V$
Rising time		tr	10 µs typ.	$V_{CC}=5 \text{ V}, \text{ R}_{L}=100 \ \Omega, \text{ I}_{L}=20 \text{ mA}$
Falling time		tf	10 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 20 mA

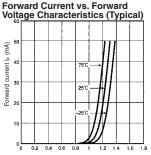

Note: All units are in millimetres unless stated.


Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

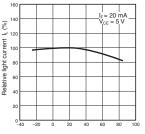
Unless otherwise stated the tolerances are ±0.2mm.


Forward Current vs. Collector Dissipation Temperature Rating


Light Current vs. Collector-Emitter Voltage Characteristics (Typical)



Response Time vs. Light Current Characteristics (Typical)


Response Time Measurement Circuit

Forward voltage V_F (V)

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

Sensing Position Characteristics

1.5 2 2.5

(Typical)

120

100

80

60

40

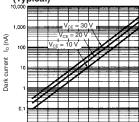
20

0

'n 0.5

Relative light current IL (%)

Ambient temperature Ta (°C)

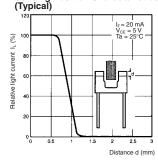

= 20 mA $V_{CE} = 5 V$ Ta = 25°C

Distance d (mm)

d١

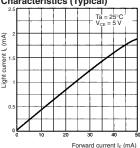
n

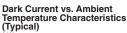
10.00


Ambient temperature Ta (°C) Sensing Position Characteristics

30 40 50 60 70 80

90


10 20


0

Transmssive Photomicrosensors

Light Current vs. Forward Current Characteristics (Typical)

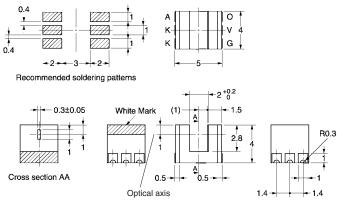
CAT. No. E906-E2-01

Features

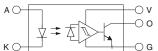
- Ultra-compact model.
- Photo IC output model.
- Operates at a Vcc of 2.2 to 7 V.
- PCB surface mounting type.

Specifications ——

■ Absolute Maximum Ratings (Ta = 25°C)


Item		Symbol	Rated value
Emitter	Forward current	IF	25 mA (see note 1)
	Reverse Voltage	V _R	5 V
Detector	Supply voltage	V _{cc}	9 V
	Output voltage	V _{OUT}	17 V
	Output current	Iout	8 mA
	Possiblr output dissipation	Pout	80 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-40°C to 90°C
	Reflow soldering	Tsol	230°C (see note 2)
	Manual soldering	Tsol	300°C (see note 2)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

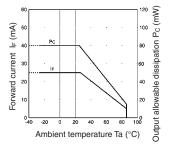

2. Complete soldering within 10 seconds for reflow soldering and within 3 seconds for manual soldering.

■ Electrical and Optical Characteristics (Ta = 25°C)

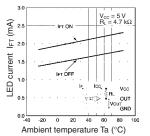
	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.4 V max.	I _F = 20 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	VR = 5 V
	Peak emission wavelength	λρ	940 nm typ.	I _F = 20 mA
Detector	Power supply voltage	V _{cc}	2.2 V min., 7 V max.	-
	Low-level output voltage	Vol	0.12 V typ., 0.4 V max.	$\label{eq:V_cc} \begin{array}{l} V_{cc} = 2.2 \text{ to } 7 \text{ V}, \\ I_{oL} = 8 \text{ mA}, \ I_F = 7 \text{ mA} \end{array}$
	High-level output current	I _{CH}	10 μA max.	$V_{\mbox{\tiny CC}}$ = 2.2 to 7 V, I_F = 0 mA, $V_{\mbox{\tiny OUT}}$ = 17 V
	Current consumption	Icc	2.8 mA typ., 4 mA max.	$V_{cc} = 7 V$
	Peak spectral sensitivity wavelength	λ _P	870 nm typ.	$V_{\rm cc}=2.2$ to 7 V
LED current	t when output is ON	I _{FT}	2.0 mA typ., 3.5 mA max.	$V_{\rm cc}=2.2$ to 7 V
Hysteresis		ΔΗ	21% typ.	$V_{\rm cc}$ = 2.2 to 7 V (see note 1)
Response f	requency	f	3 kHz min.	$V_{\rm \tiny CC}$ = 2.2 to 7 V, IF = 5 mA, I_{\rm \tiny OL} = 8 mA (see note 2)
Response o	lelay time	t _{phl}	7 ms typ.	$V_{\rm \tiny CC}$ = 2.2 to 7 V, IF = 5 mA, I_{\rm \tiny OL} = 8 mA (see note 3)
Response o	lelay time	t _{PHL}	18 ms typ.	$V_{\rm cc}$ = 2.2 to 7 V, IF = 5 mA, I_{\rm OL} = 8 mA (see note 3)

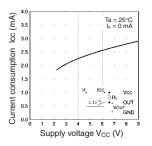
Internal Circuit

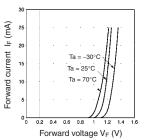
Unless otherwise specified, the tolerances are ± 0.15 mm.

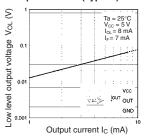

Terminal No.	Name
A	Anode
К	Cathode
V	Supply voltage (Vcc)
0	Output (OUT)
G	Ground (GND)

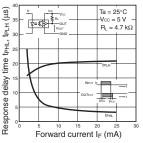
- Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
 - The value of the response frequency is measured by rotating the disk as shown below.

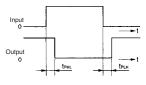


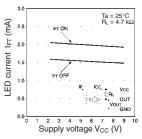

Forward Current vs. Collector Dissipation Temperature Rating

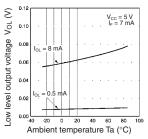

LED Current vs. Ambient Temperature Characteristics (Typical)

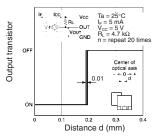

Current Consumption vs. Supply Voltage (Typical)


Forward Current vs. Forward Voltage Characteristics (Typical)

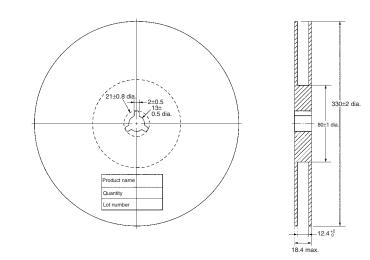

Low-level Output Voltage vs. Output Current (Typical)

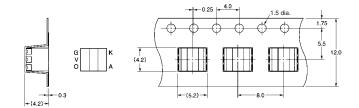

Response Delay Time vs. Forward Current (Typical)


The following illustrations show the definition of response delay time.


LED Current vs. Supply Voltage (Typical)

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)


Repeat Sensing Position Characteristics (Typical)

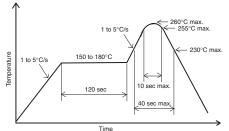

Tape and Reel

Unit: mm (inch).

Reel

Таре

Tape configuration


Tape quantity

2,000 pcs./reel

Precautions

Soldering Information

- The following soldering paste is recommended:
 - Melting temperature: 216 to 220°C
 - Composition: Sn 3.5 Ag 0.75 Cu
- The recommended thickness of the metal mask for screen printing is between 0.2 and 0.25 mm.
- Set the reflow oven so that the temperature profile shown in the following chart is obtained for the upper surface of the product being soldered.

Manual soldering

- Use "Sn 60" (60% tin and 40% lead) or solder with silver content.
- Use a soldering iron of less than 25 W, and keep the temperature of the iron tip at 350°C or below.
- · Solder each point for a maximum of three seconds.
- After soldering, allow the product to return to room temperature before handling it.

Storage

To protect the product from the effects of humidity until the package is opened, dry-box storage is recommended. If this is not possible, store the product under the following conditions:

Temperature: 10 to 30°C

Humidity: 60% max.

The product is packed in a humidity-proof envelope. Reflow soldering must be done within 48 hours after opening the envelope, during which time the product must be stored under 30°C at 80% maximum humidity.

If it is necessary to store the product after opening the envelope, use dry-box storage or reseal the envelope.

Baking

If a product has remained packed in a humidity-proof envelope for six months or more, or if more than 48 hours have lapsed since the envelope was opened, bake the product under the following conditions before use:

> Reel: 60°C for 24 hours or more Bulk: 80°C for 4 hours or more

> > ALL DIMENSIONS SHOWN ARE IN MILLIMETRES.

To convert millimetres into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

CAT. No. E910-E2-01

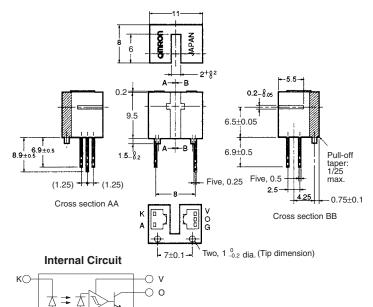
Features

- Incorporates an IC chip with a built-in detector element and amplifier.
- Incorporates a detector element with a built-in temperature compensation circuit.
- A wide supply voltage range: 4.5 to 16 VDC
- n Directly connects with C-MOS and TTL.
- Allows highly precise sensing with a 0.2-mmwide sensing aperture.

Specifications -

Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Reverse Voltage	V _R	4 V
Detector	Power supply voltage	V _{cc}	16 V
	Output voltage	V _{OUT}	28 V
	Output current	IOUT	16 mA
1	Permissible output dissipation	P _{OUT}	250 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 60°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature	·	Tsol	260°C (see note 2)


Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

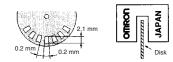
2. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	IR	0.01 µA typ., 10 µA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	V_{CC} = 4.5 to 16 V, I_{OL} = 16 mA, I_{F} = 15 mA
	High-level output voltage	V _{OH}	15 V min.	$Vcc = 16 \text{ V}, \text{R}_{\text{L}} = 1 \text{k}\Omega, \text{I}_{\text{F}} = 0 \text{mA}$
	Current consumption	Icc	5 mA typ., 10 mA max.	V _{CC} = 16 V
	Peak spectral sensitivity wavelength	λ _P	870 nm typ.	V _{CC} = 4.5 to 16 V
LED current when output is OFF		IFT	10 mA typ., 15 mA max.	V _{CC} = 4.5 to 16 V
LED current	t when output is ON			
Hysteresis		∆н	15% typ.	V_{CC} = 4.5 to 16 V (see note 1)
Response f	requency	f	3 kHz min.	$V_{\rm CC}$ = 4.5 to 16 V, $l_{\rm F}$ = 15 mA, $l_{\rm OL}$ = 16 mA (see note 2)
Response o	lelay time	t _{PLH} (t _{PHL})	3 μs typ.	$V_{\rm CC}$ = 4.5 to 16 V, I_F = 15 mA, I_{\rm OL} = 16 mA (see note 3)
Response delay time		t _{PHL} (t _{PLH})	20 µs typ.	$V_{\rm CC}$ = 4.5 to 16 V, I_F = 15 mA, I_{\rm OL} = 16 mA (see note 3)

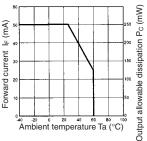
Note: All units are in millimetres unless stated.

Terminal No.	Name
A	Anode
К	Cathode
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

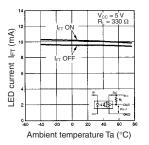

AO

M

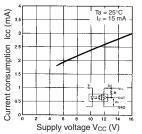
Unless otherwise specified, the tolerances are as shown below.

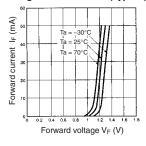

Dimensions	Tolerance
3 mm max.	±0.125
3 < mm ≤ 6	±0.150
6 < mm ≤ 10	±0.180
10 < mm ≤ 18	±0.215
18 < mm ≤ 30	±0.260

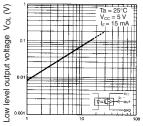
- Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
 - 2. The value of the response frequency is measured by rotating the disk as shown below.



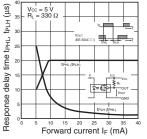
Engineering Data


Forward Current vs. Collector Dissipation Temperature Rating

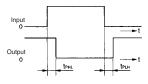

LED Current vs. Ambient Temperature Characteristics (Typical)


Current Consumption vs. Supply Voltage (Typical)

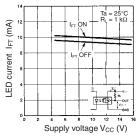
Forward Current vs. Forward Voltage Characteristics (Typical)

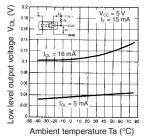


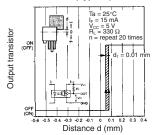
Low-level Output Voltage vs. Output Current (Typical)



Output current I_C (mA)


Response Delay Time vs. Forward Current (Typical)


The following illustrations show the definition of response delay time.


LED Current vs. Supply Voltage (Typical)

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Repeat Sensing Position Characteristics (Typical)

Features

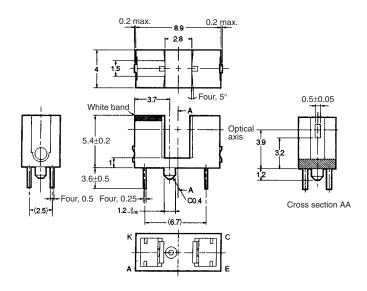
- Longer leads allow the sensor to be mounted to a 1.6-mm thick board.
- 5.4-mm-tall compact model.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications -

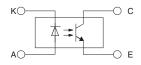
■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter Voltage	V _{CEO}	30 V
	Emitter-Collector Voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.


2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

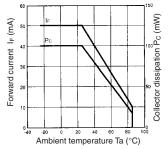
3. Complete soldering within 10 seconds.


■ Electrical and Optical Characteristics (Ta = 25°C)

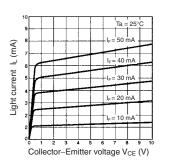
	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	IR	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max.	I_F = 20 mA, V_{CE} = 10 V
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 10 \text{ V}, 0 \ell x$
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F = 20 \text{ mA}, I_L = 0.1 \text{mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 10 V$
Rising time		tr	4 μs typ.	V_{CC} = 5 V, RL = 100 $\Omega,$ IL = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V, RL = 100 $\Omega,$ IL = 5 mA

Note: All units are in millimetres unless otherwise indicated.

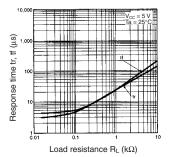
Internal Circuit

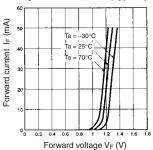


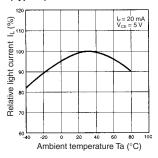
Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

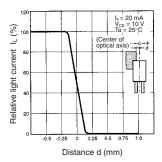

Unless otherwise specified, the tolerances are as shown below.

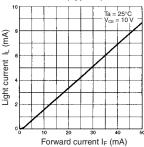
Terminal No.	Name
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

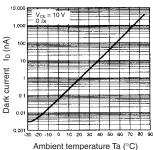

Forward Current vs. Collector Dissipation Temperature Rating

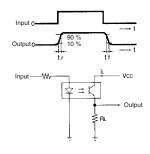

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)

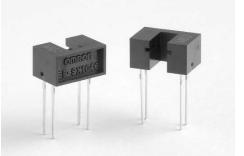

Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)


Response Time Measurement Circuit

CAT. No. E913-E2-01

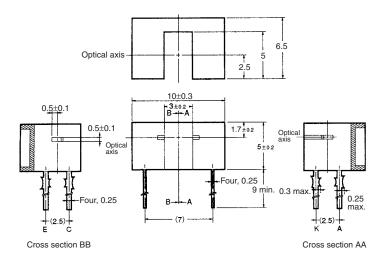
Features

- With a horizontal sensing aperture.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

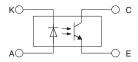
■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.


2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

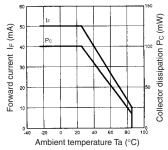
3. Complete soldering within 10 seconds.


■ Electrical and Optical Characteristics (Ta = 25°C)

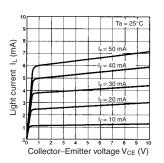
Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	920 nm typ.	I _F = 20 mA
Detector	Light current	IL.	1.2 mA min., 14 mA Max.	$I_F=20\ mA,\ V_{CE}=5\ V$
	Dark current	ID	2 nA typ., 200 nA max.	V_{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F = 20$ mA, $I_L = 0.1$ mA
	Peak spectral sensitivity wavelength	λ_P	850 nm typ.	$V_{CC} = 10 \text{ V}$
Rising time		tr	4 μs typ.	$V_{CC}=5~V,~R_L=100\Omega,~I_L=5~mA$
Falling time		tf	4 μs typ.	$V_{CC}=5~V,~R_L=100\Omega,~I_L=5~mA$

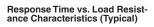
Note: All units are in millimetres unless otherwise indicated.

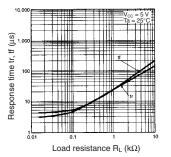
Internal Circuit

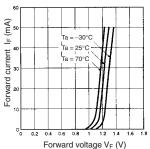


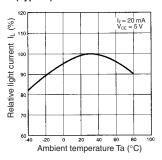
Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

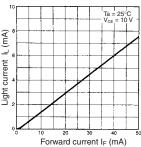

Unless otherwise specified, the tolerances are as shown below.

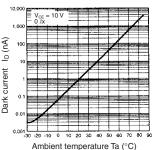

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

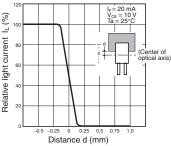

Forward Current vs. Collector Dissipation Temperature Rating

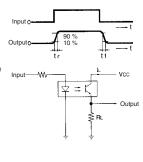

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)



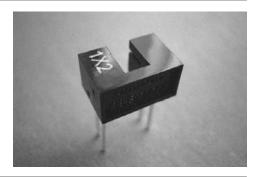

Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)


Dark Current vs. Ambient Temperature Characteristics (Typical)

Sensing Position Characteristics (Typical)



Response Time Measurement Circuit

Features

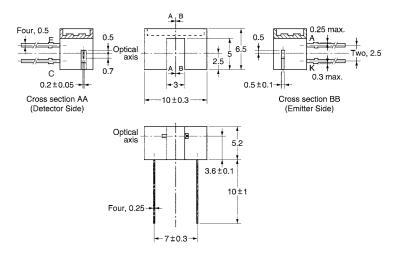
- Horizontal sensing aperture.
- PCB mounting type.
- High resolution with 0.2-mm wide aperture.

Specifications -

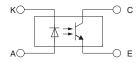
Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 85°C
	Storage	Tstg	-40°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

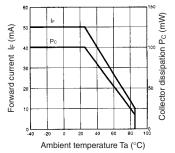

2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

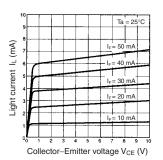
3. Complete soldering within 10 seconds.


■ Electrical and Optical Characteristics (Ta = 25°C)

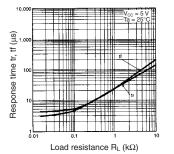
Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	920 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.12 mA min.	$I_F = 20$ mA, $V_{CE} = 5$ V
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 10 \text{ V}, 0 \ell x$
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.08 V typ., 0.4 V max.	$I_F=20 \text{ mA}, I_L=0.05 \mu\text{A}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CC} = 10 V
Rising time		tr	100 µs typ.	V_{CC} = 5 V, R_L = 50 kΩ, I_L = 0.1 mA
Falling time		tf	1,000 μs typ.	V_{CC} = 5 V, R_L = 50 kΩ, I_L = 0.1 mA

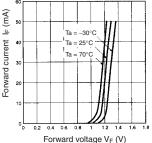
Note: All units are in millimetres unless otherwise indicated.

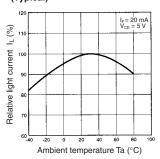

Internal Circuit

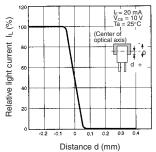

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

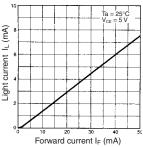
Unless otherwise specified, the tolerances are ±0.02 mm.

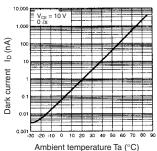

Forward Current vs. Collector Dissipation Temperature Rating

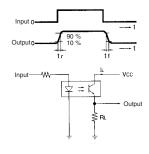

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)


Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time Measurement Circuit

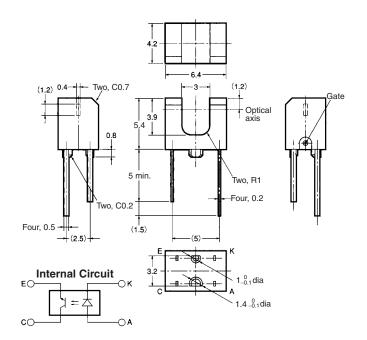
Features

- Ultra compact with a slot width of 3 mm.
- PCB mounting type.
- High resolution with 0.4-mm wide aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

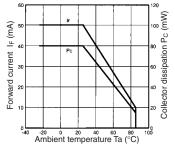
Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	-
	Reverse Voltage	V _R	5 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	4.5 V
	Collector current	I _C	30 mA
	Collector dissipation	Pc	80 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

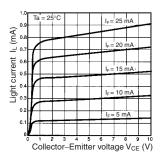

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Complete soldering within 3 seconds.

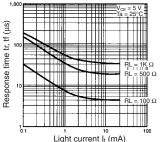
■ Electrical and Optical Characteristics (Ta = 25°C)

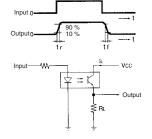
Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.3 V typ., 1.6 V max.	I _F = 50 mA
	Reverse current	l _R	10 µA max.	V _R = 5 V
	Peak emission wavelength	λ _P	950 nm typ.	$I_F = 50 \text{ mA}$
Detector	Light current	IL.	0.2 mA min.	$I_{F} = 20 \text{ mA}, V_{CE} = 5 \text{ V}$
	Dark current	I _D	500 nA max.	$V_{CE} = 10$ V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.4 V max.	$I_F = 20$ mA, $I_L = 0.1$ μ A
	Peak spectral sensitivity wavelength	λ _P	800 nm typ.	V _{CE} = 5 V
Rising time		tr	10 µs typ.	$V_{CC}=5 \text{ V}, \text{R}_{\text{L}}=100 \Omega, \text{I}_{\text{L}}=20 \text{mA}$
Falling time		tf	10 µs typ.	$V_{CC}=5~V,~R_L=100\Omega,~I_L=20~mA$

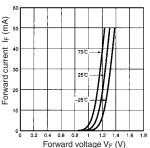

Note: All units are in millimetres unless otherwise indicated.

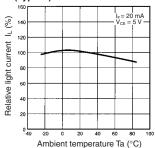

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

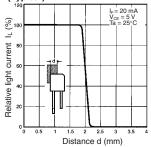
Unless otherwise specified, the tolerances are \pm 0.2 mm.

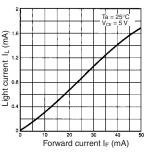

Forward Current vs. Collector Dissipation Temperature Rating

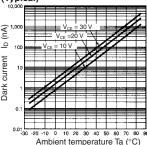

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)

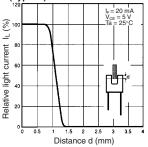

Response Time vs. Light Current Characteristics (Typical)


Response Time Measurement Circuit


Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Sensing Position Characteristics (Typical)

Transmssive Photomicrosensors

Features

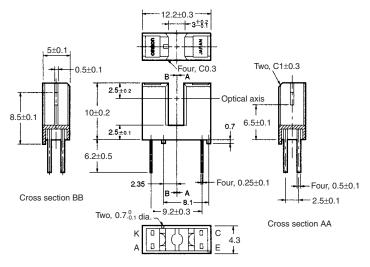
- General-purpose model with a 3-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.
- With a positioning boss.

Specifications -

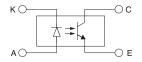
■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-40°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

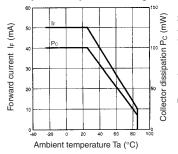

2. The pulse width is 10 µs maximum with a frequency of 100 Hz.

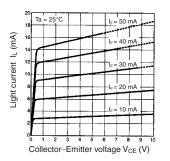
3. Complete soldering within 10 seconds.


Electrical and Optical Characteristics (Ta = 25°C)

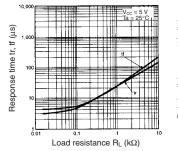
Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.4 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_{R} = 4 V$
	Peak emission wavelength	λρ	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_F = 20$ mA, $V_{CE} = 5$ V
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 20 V, 0ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F = 40 \text{ mA}, I_L = 0.5 \text{mA}$
	Peak spectral sensitivity wavelength	λρ	850 nm typ.	$V_{CE} = 10 V$
Rising time		tr	4 µs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 µs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA

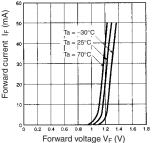
Note: All units are in millimetres unless otherwise indicated.

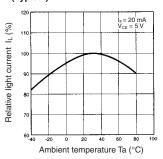

Internal Circuit

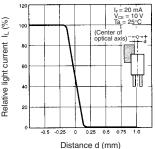

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

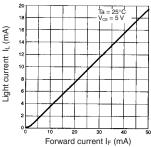
Unless otherwise specified the tolerances are ±0.2mm.

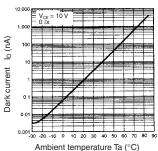

Forward Current vs. Collector Dissipation Temperature Rating

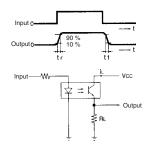



Response Time vs. Load Resistance Characteristics (Typical)


Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time Measurement Circuit

CAT. No. E918-E2-01

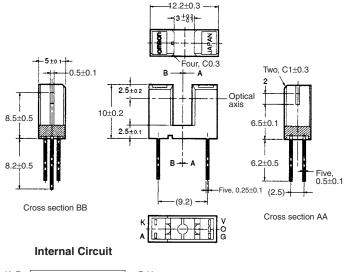
Features

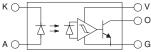
- Incorporates an IC chip with a built-in detector element and amplifier.
- Incorporates a detector element with a built-in temperature compensation circuit.
- A wide supply voltage range: 4.5 to 16 VDC
- Directly connects with C-MOS and TTL.
- High resolution with a 0.5-mm-wide sensing aperture.
- Dark ON model (EE-SX398).
- Light ON model (EE-SX498).

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value	
Emitter	Forward current	I _F	50 mA (see note 1)	
	Reverse Voltage	V _R	4 V	
Detector Power supply voltage		V _{CC}	16 V	
	Output voltage	V _{OUT}	28 V	
	Output current	lout	16 mA	
	Permissible output dissipation	P _{OUT}	250 mW (see note 1)	
Ambient temperature	Ambient temperature Operating		-40°C to 75°C	
	Storage	Tstg	-40°C to 85°C	
Soldering temperature		Tsol	260°C (see note 2)	

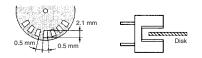

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.


2. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	IR	0.01 µA typ., 10 µA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	
	High-level output voltage	V _{OH}	15 V min.	Vcc = 16 V, R_L = 1 k Ω , I_F = 5 mA (EE-SX398), I_F = 0 mA (EE-SX498)
	Current consumption	Icc	3.2 mA typ., 10 mA max.	$V_{CC} = 16 V$
	Peak spectral sensitivity wavelength	λ _P	870 nm typ.	V_{CC} = 4.5 to 16 V
	LED current when output is OFF LED current when output is ON		2 mA typ., 5 mA max.	$V_{CC} = 4.5 \text{ to } 16$
Hysteresis		∆H	15% typ.	V _{CC} = 4.5 to 16 V (see note 1)
Response frequency		f	3 kHz min.	$V_{\rm CC}$ = 4.5 to 16 V, I_F = 15 mA, I_{\rm OL} = 16 mA (see note 2)
Response delay time		t _{PLH} (t _{PHL})	3 μs typ.	$V_{\rm CC}=4.5$ to 16 V, I_F = 15 mA, I_{\rm OL}=16 mA (see note 3)
Response delay time		t _{PHL} (t _{PLH})	20 µs typ.	V_{CC} = 4.5 to 16 V, $I_{\rm F}$ = 15 mA, $I_{\rm OL}$ = 16 m (see note 3)

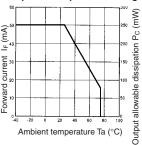
Note: All units are in millimetres unless otherwise indicated.

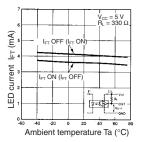


Unless otherwise specified, the tolerances are as shown below.

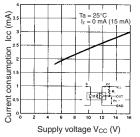
Terminal No.	Name
A	Anode
К	Cathode
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

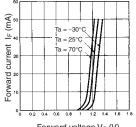
Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65


- Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
 - 2. The value of the response frequency is measured by rotating the disk as shown below.

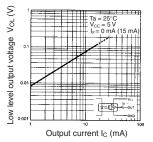

Engineering Data

Note: The values in the parentheses apply to the EE-SX498.

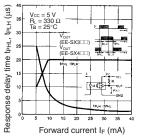

Forward Current vs. Collector Dissipation Temperature Rating


LED Current vs. Ambient Temperature Characteristics (Typical)

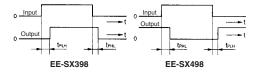
Current Consumption vs. Supply Voltage (Typical)

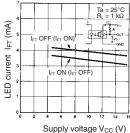


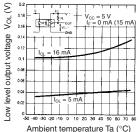
Forward Current vs. Forward Voltage Characteristics (Typical)

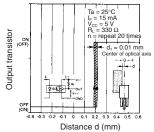


Forward voltage V_F (V)

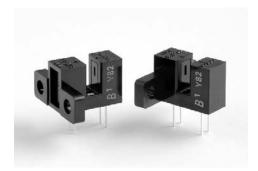

Low-level Output Voltage vs. Output Current (Typical)


Response Delay Time vs. Forward Current (Typical)


3. The following illustrations show the definition of response delay time. The value in the parentheses applies to the EE-SX498.


LED Current vs. Supply Voltage (Typical)

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)


Repeat Sensing Position Characteristics (Typical)

Photomicrosensor-Transmissive – EE-SV3 Series

Features

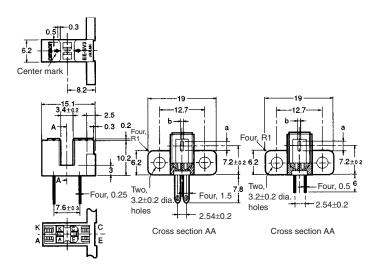
- High-resolution model with a 0.2-mm-wide or 0.5-mm-wide sensing aperture, highsensitivity model with a 1-mm-wide sensing aperture, and model with a horizontal sensing aperture are available.
- Solder terminal models: EE-SV3/-SV3-CS/-SV3-DS/-SV3-GS
- PCB terminal models: EE-SV3-B/-SV3-C/-SV3-D/-SV3-G

Specifications -

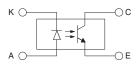
■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Emitter Forward current Is		I _F	50 mA (see note 1)
	Pulse forward current		1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector Collector-Emitter Voltage		V _{CEO}	30 V
	Emitter-Collector Voltage	V _{ECO}	-
		Ic	20 mA
		P _C	100 mW (see note 1)
Ambient temperature	Ambient temperature Operating		-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.


2. The pulse width is 10 µs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.


■ Electrical and Optical Characteristics (Ta = 25°C)

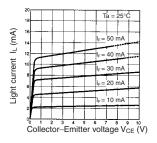
Item		Symbol	Value			Condition	
			EE-SV3(-B)	EE-SV3-C(S)	EE-SV3-D(S)	EE-SV3-G(S)	
Emitter	Forward voltage	V _F	1.2 V typ., 1.5	1.2 V typ., 1.5 V max.			I _F = 30 mA
	Reverse current	IR	0.01 µA typ., 1	0 μA max.			$V_R = 4 V$
	Peak emission wavelength	λ_P	940 nm typ.	940 nm typ.			I _F = 20 mA
Detector	Light current	IL.	0.5 to 14 mA	1 to 28 mA	0.1 mA min.	0.5 to 14 mA	I _F = 20 mA, V _{CE} = 10 V
	Dark current	I _D	2 nA typ., 200	nA max.			$V_{CE}=10 \text{ V, } 0\ell x$
	Leakage current	I _{LEAK}	-				-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max. – 0.1 V typ. 0.4 V max.		$\begin{array}{l} I_F = 20 \text{ mA}, \\ I_L = 0.1 \ \mu\text{A} \end{array}$		
	Peak spectral sensitivity wavelength	λ_P	850 nm typ.			V _{CE} = 10 V	
Rising time	Rising time		4 µs typ.				$V_{CC} = 5 V,$ $R_1 = 100 \Omega,$
Falling time		tf	4 μs typ.			$R_L = 100 \Omega_2$, $I_L = 5 \text{ mA}$	

Note: All units are in millimetres unless otherwise indicated.

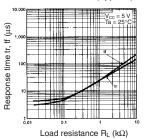
Internal Circuit

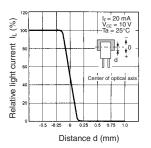
Model	Aperture (a x b)	
EE-SV3(-B)	2.1 x 0.5	
EE-SV3-C(S)	2.1 x 1.0	
EE-SV3-D(S)	2.1 x 0.2	
EE-SV3-G(S)	0.5 x 2.1	

Unless otherwise specified, the tolerances are as shown below.

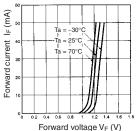

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Dimensions	Tolerence
3 mm max.	±0.2
3 < mm ≤ 6	±0.24
6 < mm ≤ 10	±0.29
10 < mm ≤ 18	±0.35
18 < mm ≤ 30	±0.42

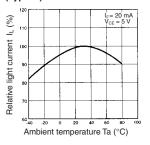

Forward Current vs. Collector Dissipation Temperature Rating


Light Current vs. Collector–Emitter Voltage Characteristics (EE-SV3(-B))

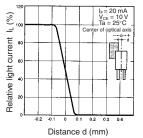
Response Time vs. Load Resistance Characteristics (Typical)

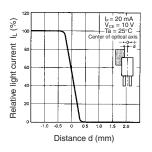


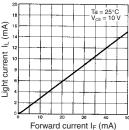
Sensing Position Characteristics (EE-SV3-G(S))

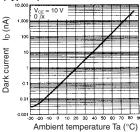


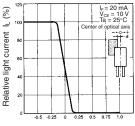
CAT. No. E920-E2-01


Forward Current vs. Forward Voltage Characteristics (Typical)

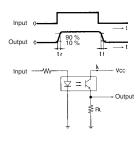

Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (EE-SV3-D(S))




Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient **Temperature Characteristics** (Typical)



Sensing Position Characteristics (EE-SV3(-B))

Distance d (mm)

Response Time Measurement Circuit

Features

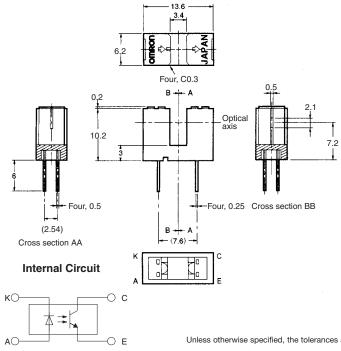
- General-purpose model with a 3.4-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Emitter	Forward current		50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector Collector-Emitter voltage		V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
Collector dissipation		P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

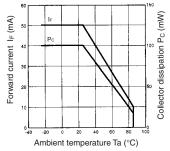

2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

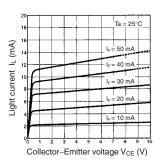
■ Electrical and Optical Characteristics (Ta = 25°C)

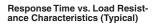
Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_F = 20 \text{ mA}, V_{CE} = 10 \text{ V}$
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 10$ V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F = 20 \text{ mA}, I_L = 0.1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CE} = 10 V
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V. R_L = 100 $\Omega,~I_L$ = 5 mA

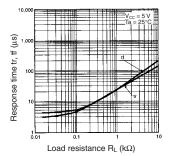
Note: All units are in millimetres unless otherwise indicated.

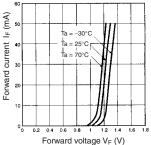


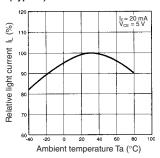
Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

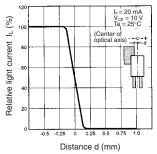

Unless otherwise specified, the tolerances are shown below

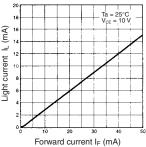

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

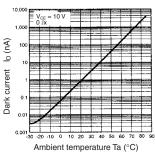

Forward Current vs. Collector Dissipation Temperature Rating

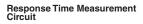

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)

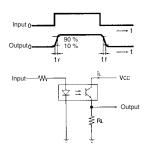



Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)






Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Features

- General-purpose model with a 3.4-mm-wide slot.
- PCB or connector mounting.
- High resolution with a 0.5-mm-wide aperture.
- With a horizontal sensing slot.
- OMRON's XK8-series Connectors can be connected without soldering. Contact your OMRON representative for information on obtaining XK8-series Connectors.

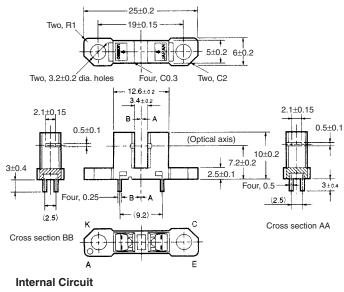
Specifications -

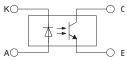
■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

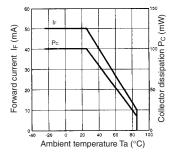
2. The pulse width is 10 µs maximum with a frequency of 100 Hz.


3. Complete soldering within 10 seconds.

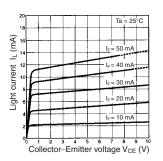

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	IR	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max.	I _F = 20 mA, V _{CE} = 10 V
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F = 20 \text{ mA}, I_L = 0.1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CE} = 10 V
Rising time		tr	4 μs typ.	V_{CC} = 5 V, R_L = 100 Ω , I_L = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V, R_L = 100 Ω , I_L = 5 mA

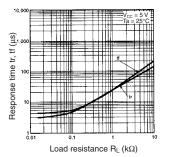
Note: All units are in millimetres unless otherwise indicated.



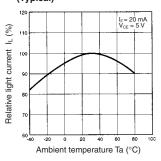
Unless otherwise specified, the tolerances are shown below

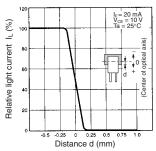

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

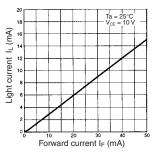
Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

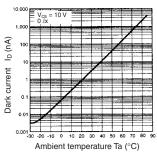

Forward Current vs. Collector Dissipation Temperature Rating

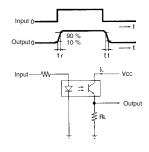
Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)


Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time Measurement Circuit

CAT. No. E922-E2-01

800

Features

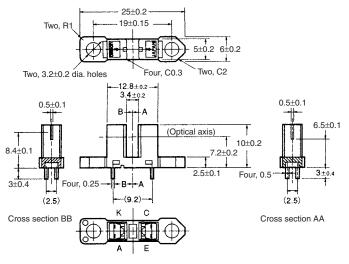
- General-purpose model with a 3.4-mm-wide slot.
- Mounts to PCBs or connects to connectors.
- High resolution with a 0.5-mm-wide aperture.
- OMRON's XK8-series Connectors can be connected without soldering. Contact your OMRON representative for information on obtaining XK8-series Connectors.

Specifications -

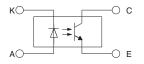
Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

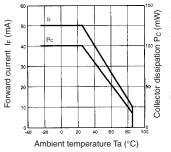

2. The pulse width is 10 µs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

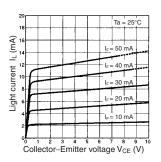

Item		Symbol	Value	Condition
Emitter Forward voltage		V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector Light current		IL.	0.5 mA min., 14 mA max.	$I_F = 20 \text{ mA}, V_{CE} = 10 \text{ V}$
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 10$ V, 0 ℓ_X
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.15 V typ., 0.4 max.	$I_F = 20 \text{ mA}, I_L = 0.1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CE} = 10 V
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA
Falling time		tf	4 μs typ.	$V_{CC}=5$ V. $R_L=100\Omega,I_L=5$ mA

Note: All units are in millimetres unless otherwise indicated.

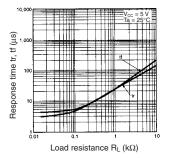
Internal Circuit

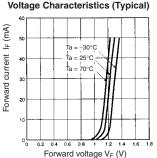


Unless otherwise specified, the tolerances are shown below

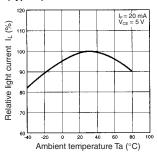

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

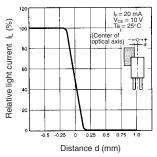
Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65


Forward Current vs. Collector Dissipation Temperature Rating

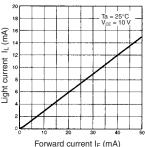


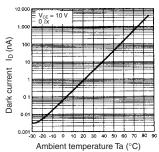
Light Current vs. Collector–Emitter Voltage Characteristics (Typical)

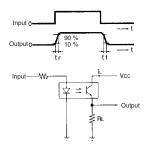

Response Time vs. Load Resistance Characteristics (Typical)



Forward Current vs. Forward


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time Measurement Circuit

Photomicrosensor-Transmissive – EE-SH3 Series

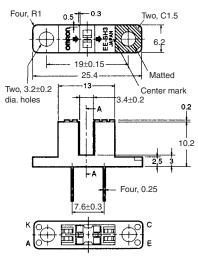
Features

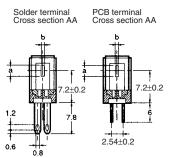
- High-resolution model with a 0.2-mm-wide or 0.5-mm-wide sensing aperture, high-sensitivity model with a 1-mm-wide sensing aperture, and model with a horizontal sensing aperture are available.
- Solder terminal models: EE-SH3/-SH3-CS/-SH3-DS/-SH3-GS
- PCB terminal models: EE-SH3-B/-SH3-C/-SH3-D/-SH3-G

Specifications

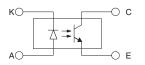
■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Emitter Forward current Ir		l _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector Collector-Emitter voltage		V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)


Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

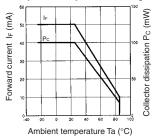

2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

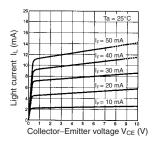

Item		Symbol		Value			Condition
			EE-SH3(-B)	EE-SH3 -C(S)	EE-SH3 -D(S)	EE-SH3 -G(S)	
Emitter	mitter Forward voltage V _F 1.2 V typ., 1.5 V max.			$I_F = 30 \text{ mA}$			
	Reverse current	I _R	0.01 μA typ., 10 μA max.			$V_R = 4 V$	
	Peak emission wavelength	λ _P	940 nm typ.				I _F = 20 mA
Detector	Light current	IL.	0.5 to 14 mA typ.	1 to 28 mA typ.	0.1 mA min.	0.5 to 14 mA	$\begin{array}{l} I_F = 20 \text{ mA}, \\ V_{CE} = 10 \text{ V} \end{array}$
Dark current		ID	2 nA typ., 200 nA max.			$\begin{array}{c} V_{CE} = 10 \ V \\ 0 \ \ell_X \end{array}$	
Leakage current		I _{LEAK}	-			-	
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4	max.	-	0.1 V typ. 0.4 max.	$\begin{array}{l} I_{\rm F}=20 \text{ mA,} \\ I_{\rm L}=0.1 \text{ mA} \end{array}$
Peak spectral sensitivity wavelength		λ _P	850 nm typ.				$V_{CE} = 10 \text{ V}$
Rising time		tr	4 μs typ.			$V_{CC} = 5 V.$ R ₁ = 100 Ω ,	
Falling time		tf	4 μs typ.			$R_{L} = 100\Omega_{2},$ $I_{L} = 5 \text{ mA}$	

Note: All units are in millimetres unless otherwise indicated.

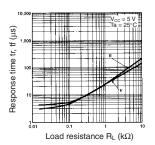
Internal Circuit

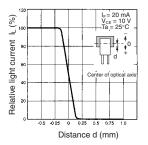

Model	Aperture (a x b)
EE-SH3(-B)	2.1 x 0.5
EE-SH3-C(S)	2.1 x 1.0
EE-SH3-D(S)	2.1 x 0.2
EE-SH3-G(S)	0.5 x 2.1

Unless otherwise specified, the tolerances are shown below

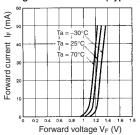

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Dimensions	Tolerance
3 mm max.	±0.2
3 < mm ≤ 6	±0.24
6 < mm ≤ 10	±0.29
10 < mm ≤ 18	±0.35
18 < mm ≤ 30	±0.42

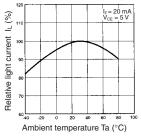

Forward Current vs. Collector Dissipation Temperature Rating


Light Current vs. Collector–Emitter Voltage Characteristics (EE-SH3(-B))

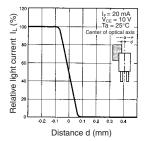
Response Time vs. Load Resistance Characteristics (Typical)

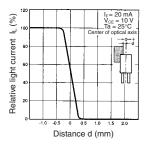


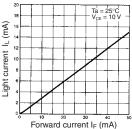
Sensing Position Characteristics (EE-SH3-G(S))

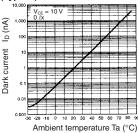


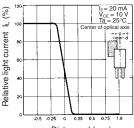
CAT. No. E924-E2-01


Forward Current vs. Forward Voltage Characteristics (Typical)

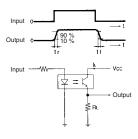

Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (EE-SH3-D(S))




Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)



Sensing Position Characteristics (EE-SH3(-B))

Distance d (mm)

Response Time Measurement Circuit

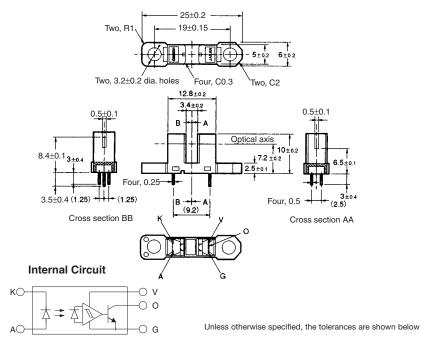
Photomicrosensor-Transmissive - EE-SX3088/4088

Features

- Incorporates an IC chip with a built-in detector element and amplifier.
- A wide supply voltage range: 4.5 to 16 VDC.
- Directly connects with C-MOS and TTL.
- High resolution with a 0.5-mm-wide sensing aperture.
- Dark ON model (EE-SX3088).
- Light ON model (EE-SX4088).
- OMRON's XK8-series Connectors can be connected to the lead wires without a PCB. Contact your OMRON representative for information on obtaining XK8-series Connectors.

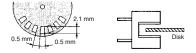
Specifications ·

■ Absolute Maximum Ratings (Ta = 25°C)


	Item	Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Reverse Voltage	V _R	4 V
Detector Power supply voltage		V _{CC}	16 V
	Output voltage	V _{OUT}	28 V
	Output current	IOUT	16 mA
	Permissible output dissipation	P _{OUT}	250 mW (see note 1)
Ambient temperature Operating		Topr	-40°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

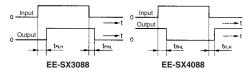
Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. Complete soldering within 10 seconds.

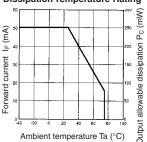

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm	I _F = 20 mA
Detector	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	$ V_{CC} = 4.5 \text{ to } 16 \text{ V}, \ I_{OL} = 16 \text{ mA}, \ I_F = 0 \text{ mA} \\ (EE-SX3088), \ I_F = 5 \text{ mA} (EE-SX4088) $
	High-level output voltage	V _{OH}	15 V min.	
	Current consumption	I _{CC}	3.2 mA typ., 10 mA max.	$V_{CC} = 16 V$
	Peak spectral sensitivity wavelength	λ _P	870 nm	V _{CC} = 4.5 to 16 V
LED current	LED current when output is OFF		2 mA typ., 5 mA max.	V _{CC} = 4.5 to 16 V
LED current	LED current when output is ON			
Hysteresis		∆H	15% typ.	V _{CC} = 4.5 to 16 V (see note 1)
Response frequency		f	3 kHz min.	$V_{\rm CC}$ = 4.5 to 16 V, $I_{\rm F}$ = 15 mA, $I_{\rm OL}$ = 16mA (see note 2)
Response delay time		t _{PLH} (t _{PHL})	3 μs typ.	$V_{\rm CC}$ = 4.5 to 16 V, $\rm I_F$ = 15 mA, $\rm I_{OL}$ = 16 mA (see note 3)
Response delay time		t _{PHL} (t _{PLH})	20 µs typ.	$V_{\rm CC}$ = 4.5 to 16 V, $I_{\rm F}$ = 15 mA, $I_{\rm OL}$ = 16 mA (see note 3)

Note: All units are in millimetres unless otherwise indicated.

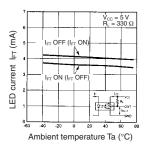
Terminal No.	Name
A	Anode
К	Cathode
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)


- Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
 - 2. The value of the response frequency is measured by rotating the disk as shown below.

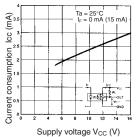
 Dimensions
 Tolerance


 3 mm max.
 ± 0.3
 $3 < mm \le 6$ ± 0.375
 $6 < mm \le 10$ ± 0.45
 $10 < mm \le 18$ ± 0.55
 $18 < mm \le 30$ ± 0.65

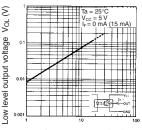
 The following illustrations show the definition of response delay time. The value in the parentheses applies to the EESX4088.



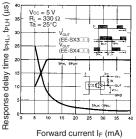
Note: The values in the parentheses apply to EE-SX4080.


Forward Current vs. Collector Dissipation Temperature Rating

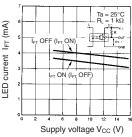
LED Current vs. Ambient Temperature Characteristics (Typical)


Current Consumption vs. Supply Voltage (Typical)

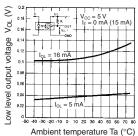
Voltage Characteristics (Typical) $(\Psi_{u})^{u}$ (Ψ_{u})

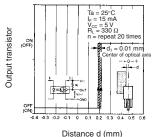

Forward Current vs. Forward

Low-level Output Voltage vs. Output Current (Typical)



Output current I_C (mA)


Response Delay Time vs. Forward Current (Typical)


LED Current vs. Supply Voltage (Typical)

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Repeat Sensing Position Characteristics (Typical)

CAT. No. E925-E2-01

Photomicrosensor-Transmissive - EE-SG3/EE-SG3-B

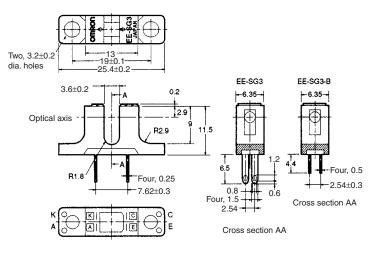
Features

- Dust-proof model.
- Solder terminal model (EE-SG3).
- PCB terminal model (EE-SG3-B).

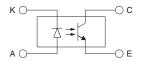
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)


Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

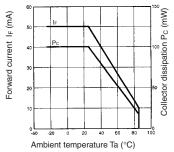
2. The pulse width is 10 μs maximum with a frequency of 100 Hz.


3. Complete soldering within 10 seconds.

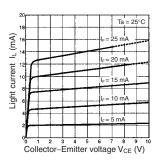
	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	2 mA min., 40 mA max.	$I_{F} = 15 \text{ mA}, V_{CE} = 10 \text{ V}$
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	$I_F = 30 \text{ mA}, I_L = 1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CE} = 10 V
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA

Note: All units are in millimetres unless otherwise indicated.

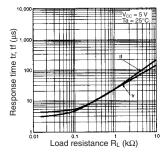
Internal Circuit

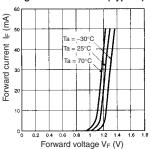


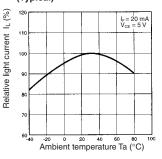
Unless otherwise specified, the tolerances are shown below

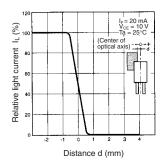

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

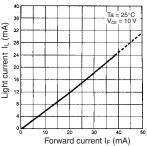
Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

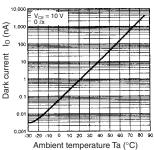

Forward Current vs. Collector Dissipation Temperature Rating

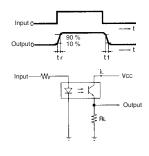

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)


Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time Measurement Circuit

CAT. No. E926-E2-01

Photomicrosensor-Transmissive – EE-SX1057

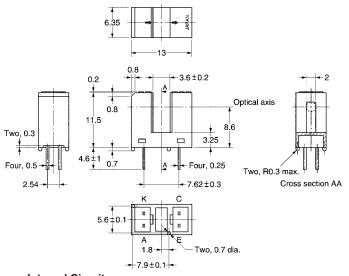
Features

- Compact model with a 3.6-mm-wide slot.
- PCB mounting type.

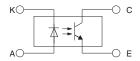
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	5 V
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)


Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

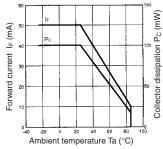

3. Complete soldering within 10 seconds.

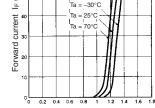
	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.5 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	IR	0.01 μA typ., 10 μA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	1.5 mA min., 8 mA typ., 30 mA max.	I_F = 15 mA, V_{CE} = 2 V
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 10 \text{ V}, 0 \ell x$
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.4 V max.	$I_{\rm F} = 30$ mA, $I_{\rm L} = 1$ mA
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 10 V$
Rising time		tr	4 ms typ., 20 mA max.	V_{CC} = 10 V. R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 ms typ., 20 mA max.	V_{CC} = 10 V. R_L = 100 Ω , I_L = 5 mA

Note: All units are in millimetres unless otherwise indicated.

Internal Circuit

Unless otherwise specified, the tolerances are shown below

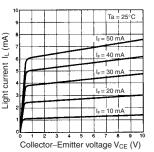

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter


Dimensions	Tolerance
3 mm max.	±0.
3 < mm ≤ 6	±0.24
6 < mm ≤ 10	±0.29
10 < mm ≤ 18	±0.35
18 < mm ≤ 30	±0.42

(WA) ™A

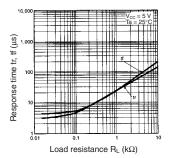
Engineering Data

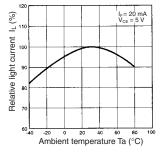
Forward Current vs. Collector **Dissipation Temperature Rating**


Forward Current vs. Forward

Та

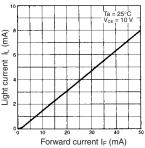
Voltage Characteristics (Typical)

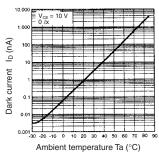

Forward voltage V_F (V)

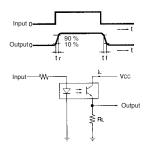

Light Current vs. Collector-Emitter Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Voltage Characteristics (Typical)

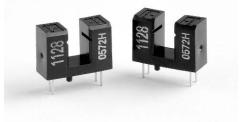
Response Time vs. Load Resistance Characteristics (Typical)




Sensing Position Characteristics (Typical)


Light Current vs. Forward Current **Characteristics (Typical)**

Dark Current vs. Ambient Temperature Characteristics (Typical)


Response Time Measurement Circuit

Photomicrosensor-Transmissive – EE-SX1128

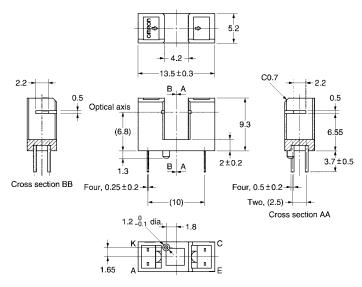
Features

- General-purpose model with a 4.2-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.
- Horizontal sensing aperture.

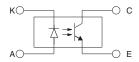
Specifications -

Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	IFP	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter Voltage	V _{CEO}	30 V
	Emitter-Collector Voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)


Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

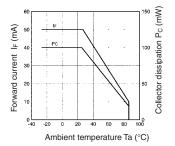
2. The pulse width is 10 μs maximum with a frequency of 100 Hz.


3. Complete soldering within 10 seconds.

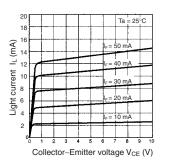
	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 10 mA max.	$I_F = 20$ mA, $V_{CE} = 10$ V
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 10$ V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	$I_F = 20 \text{ mA}, I_L = 1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CE} = 10 V
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V. R_L = 100 $\Omega,~I_L$ = 5 mA

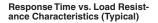
Note: All units are in millimetres unless otherwise indicated.

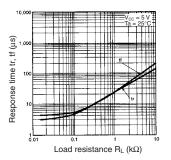
Internal Circuit

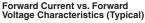


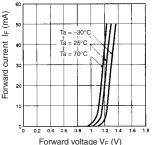
Unless otherwise specified, the tolerances are shown below

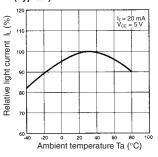

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

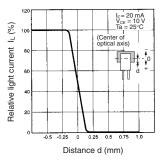

Dimensions	Tolerance
0 < mm ≤ 4	±0.100
4 < mm ≤ 18	±0.200

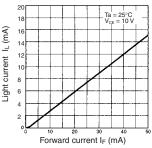

Forward Current vs. Collector Dissipation Temperature Rating

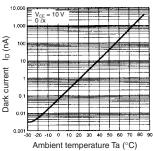


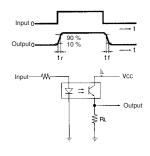

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)





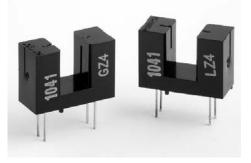

Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time Measurement Circuit



CAT. No. E928-E2-01

Photomicrosensor-Transmissive – EE-SX1041

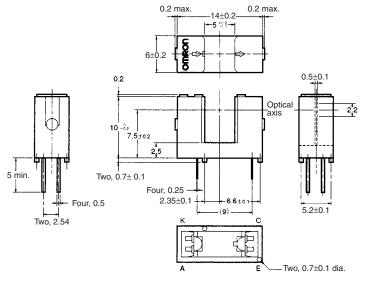
Features

- General-purpose model with a 5-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

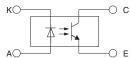
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)


Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

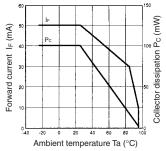
2. The pulse width is 10 μs maximum with a frequency of 100 Hz.


3. Complete soldering within 10 seconds.

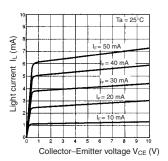
Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	IR	0.01 μA typ., 10 μA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_F=20\ m\text{A},\ V_{CE}=10\ V$
	Dark current	ID	2 nA typ., 200 nA max.	V_{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	$I_F = 20 \text{ mA}, I_L = 0.1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CE} = 10 V
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V. R_L = 100 $\Omega,~I_L$ = 5 mA

Note: All units are in millimetres unless otherwise indicated.

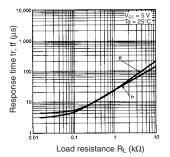
Internal Circuit

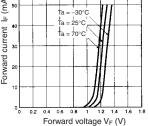


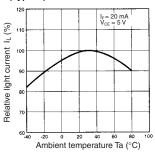
Unless otherwise specified, the tolerances are shown below

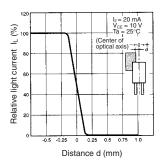

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

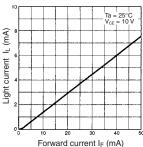
Tolerance
±0.3
±0.375
±0.45
±0.55
±0.65

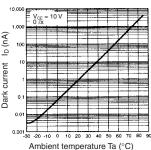

Forward Current vs. Collector Dissipation Temperature Rating

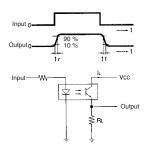

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)


Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)




Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time Measurement Circuit

Photomicrosensor-Transmissive – EE-SX1042

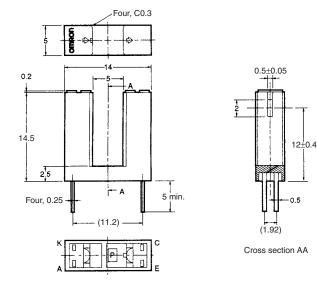
Features

- 14.5mm tall model with a deep slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

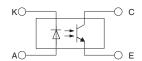
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)


Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

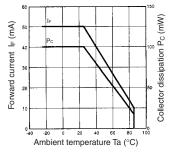
2. The pulse width is 10 µs maximum with a frequency of 100 Hz.


3. Complete soldering within 10 seconds.

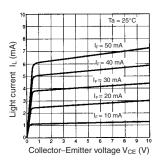
Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 10 mA max.	$I_F = 20 \text{ mA}, V_{CE} = 10 \text{ V}$
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 lx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	$I_F = 20 \text{ mA}, I_L = 0.1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CE} = 10 V
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA

Note: All units are in millimetres unless otherwise indicated.

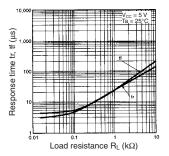
Internal Circuit

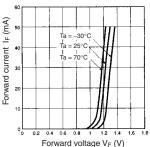


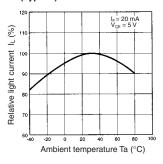
Unless otherwise	specified	the tolerances	are shown below

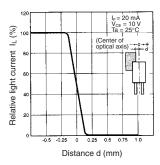

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

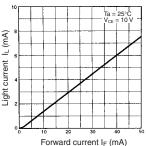
Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

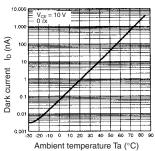

Forward Current vs. Collector Dissipation Temperature Rating

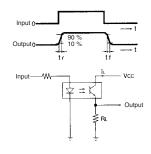

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)


Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)




Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time Measurement Circuit

CAT. No. E930-E2-01

Photomicrosensor-Transmissive – EE-SX1081

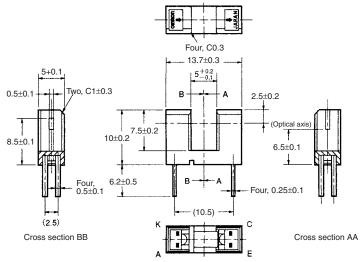
Features

- General-purpose model with a 5-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

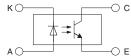
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

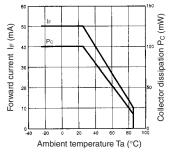

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

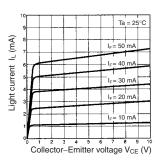
2. The pulse width is 10 μs maximum with a frequency of 100Hz.


3. Complete soldering within 10 seconds.

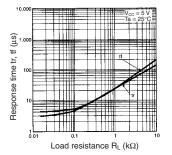
Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max	$I_F = 20 \text{ mA}, V_{CE} = 10 \text{ V}$
	Dark current	ID	2 nA typ., 200 nA max.	V_{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F = 20 \text{ mA}, I_L = 0.1 \text{ mA}$
	Peak spectral sensitivity	λ _P	850 nm typ.	V _{CE} = 10 V
Rising time		tr	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 µs typ.	V_{CC} = 5 V, R_L = 100 $\Omega, \ I_L$ = 5 mA

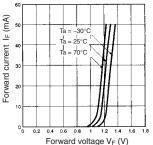
Note: All units are in millimetres unless otherwise indicated.

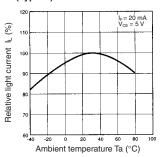

Internal Circuit

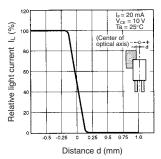

Terminal No.	Name
A	Anode
к	Cathode
С	Collector
E	Emitter

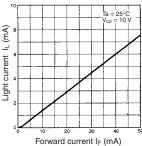
Terminal No.	Name
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65


Forward Current vs. Collector Dissipation Temperature Rating

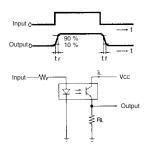

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)


Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

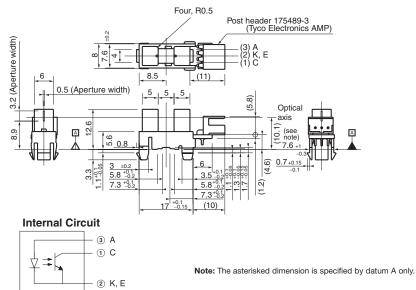
Response Time Measurement Circuit

Photomicrosensor-Transmissive – EE-SX1235A-P2

Features

- Snap-in mounting model.
- Mounts to 1.0-, 1.2- and 1.6-mm-thick PCBs.
- High resolution with a 0.5-mm-wide aperture.
- 5-mm-wide slot.
- Connects to Tyco Electronics AMP's CT-series connectors.

Specifications -


■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note)
	Pulse forward current	I _{FP}	-
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	5 V
	Collector current	lc	20 mA
	Collector dissipation	Pc	100 mW (see note)
Ambient temperature	Operating	Topr	-25°C to 95°C
	Storage	Tstg	-40°C to 100°C
Soldering temperature		Tsol	-

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

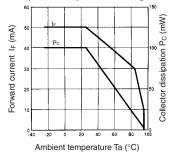
	Item Symbol Value Condition			Condition
Emitter	Forward voltage	VF	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 30 mA
Detector	Light current	IL.	0.6 mA min., 14 mA max.	$I_F = 20$ mA, $V_{CE} = 5$ V
	Dark current	ID	200 nA max.	V _{CE} = 10 V, 0 l/x
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	$I_{\rm F} = 20$ mA, $I_{\rm L} = 0.3$ mA
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CE} = 5 V
Rising time		tr	8 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 1 mA
Falling time		tf	8 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 1 mA

Note: All units are in millimetres unless otherwise indicated.

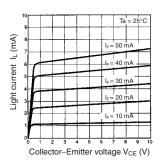
Unless otherwise specified, the tolerances are shown below

Terminal No.	Name
A	Anode
С	Collector
K, E	Cathode, Emitter

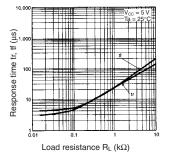
Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

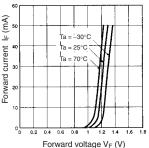

Recommended Mating Connectors:

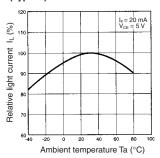
Tyco Electronics AMP 173977-3 (insulation displacement-type connector)

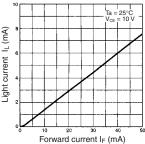

175778-3 (crimp-type connector)

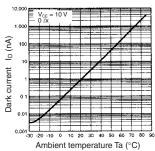
179228-3 (crimp-type connector)

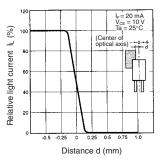

Forward Current vs. Collector Dissipation Temperature Rating

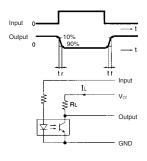

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)

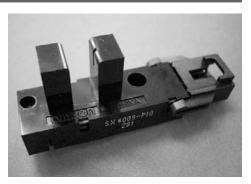

Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)


Dark Current vs. Ambient Temperature Characteristics (Typical)

Sensing Position Characteristics (Typical)


Response Time Measurement Circuit

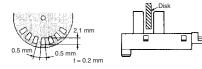
Photomicrosensor-Transmissive - EE-SX3009-P1/-SX4009-P1

Features

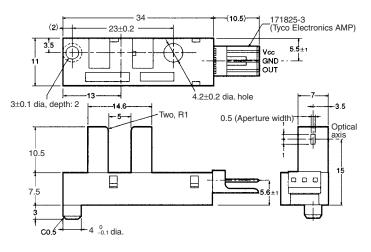
- Screw-mounting model.
- High resolution with a 0.5-mm-wide sensing aperture.
- With a 5-mm-wide groove.
- Photo IC output signals directly connect with C-MOS and TTL.
- Connects to Tyco Electronics AMP's El-series connectors.

Specifications -

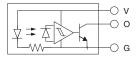
■ Absolute Maximum Ratings (Ta = 25°C)


Item		Symbol	Rated value
Power supply voltage		V _{cc}	10 V
Output voltage		Vout	28 V
Output current		I _{OUT}	16 mA
Permissible output dissipation		Pout	250 mW (see note)
Ambient temperature	Operating	Topr	-25°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	-

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C.


■ Electrical and Optical Characteristics (Ta = 25°C, Vcc = 5 V ± 10%)

Item	Symbol	Value	Condition
Current consumption	I _{CC}	30 mA max.	With and without incident
Low-level output voltage	V _{OL}	0.3 V max.	I _{OUT} = 16 mA Without incident (EE-SX3009-P1) With incident (EE-SX4009-P1)
High-level output voltage	V _{OH}	(V _{CC} x 0.9) V min.	$\label{eq:Vour} \begin{split} V_{\text{OUT}} = V_{\text{CC}} \\ \text{With incident} (\text{EE-SX3009-P1}) \\ \text{Without incident} (\text{EE-SX4009-P1}), \\ \text{R}_{\text{L}} = 47 \ \text{k}\Omega \end{split}$
Response frequency	f	3 kHz min.	$V_{OUT} = V_{CC,} R_L = 47 \text{ k}\Omega$ (see note)


Note: The value of the response frequency is measured by rotating the disk as shown below.

Note: All units are in millimetres unless otherwise indicated.

Internal Circuit

Terminal No.	Name
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Recommended Mating Connectors:

 Tyco Electronics AMP 171822-3 (crimp-type connector)

 172142-3 (crimp-type connector)

 OMRON
 EE-1005 (with harness)

Unless otherwise specified, the tolerances are shown below

Dimensions	Tolerance
4 mm max.	±0.2
1 < mm ≤ 16	±0.3
16 < mm ≤ 63	±0.5

30

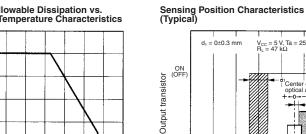
250

200

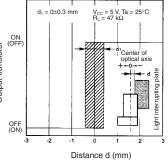
150

100 50

0L -40

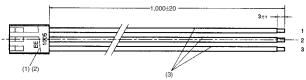

Output allowable dissipation Pc (mW)

Output Allowable Dissipation vs. Ambient Temperature Characteristics


20

40 60

Ambient temperature Ta (°C)



80 100

EE-1005 Connector

-20 ō

Number	Name	Model	Quantity	Maker
1	Receptacle housing	171822-3	1	Tyco Electronics AMP
2	Receptacle contact	170262-1	3	Tyco Electronics AMP
3	Lead wire	UL1007 AWG24	3	-

Wiring

Connector circuit no.	Lead wire colour	Output when connected to EE-SX4009-P1
1	Red	V _{cc}
2	Orange	GND
3	Yellow	OUT

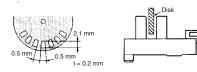
Photomicrosensor-Transmissive - EE-SX3019-P2/-SX4019-P2

Features

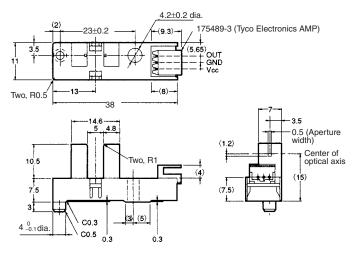
- Screw-mounting model.
- High resolution with a 0.5-mm-wide sensing aperture.
- With a 5-mm-wide groove.
- Photo IC output signals directly connect with C-MOS and TTL.
- Connects to Tyco Electronics AMP's CT-series connectors.

Specifications -

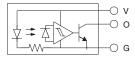
■ Absolute Maximum Ratings (Ta = 25°C)


Item		Symbo	Rated value
Power supply voltage		V _{cc}	7 V
Output voltage		Vout	28 V
Output current		I _{OUT}	16 mA
Permissible output dissipation		Pout	250 mW (see note)
Ambient temperature	Operating	Topr	-20°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	-

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C.


■ Electrical and Optical Characteristics (Ta = 25°C, Vcc = 5 V ± 10%)

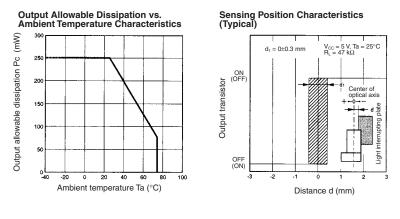
Item	Symbol	Value	Condition
Current consumption	I _{CC}	20 mA max.	With and without incident
Low-level output voltage	V _{OL}	0.3 V max.	I _{OUT} = 16 mA Without incident (EE-SX3019-P2) With incident (EE-SX4019-P2)
High-level output voltage	V _{OH}	(V _{CC} x 0.9) V min.	$\label{eq:V_OUT} \begin{split} V_{\text{OUT}} &= V_{\text{CC}} \text{ without incident,} \\ \text{Without incident (EE-SX3019-P2)} \\ \text{With incident (EE-SX4019-P2),} \\ \text{R}_L &= 47 \ \text{k}\Omega \end{split}$
Response frequency	f	3 kHz min.	V_{OUT} = $V_{\text{CC},}R_{\text{L}}$ = 47 k Ω (see note)


Note: The value of the response frequency is measured by rotating the disk as shown below.

Note: All units are in millimetres unless otherwise indicated.

Internal Circuit

Unless otherwise specified, the tolerances are shown below


Terminal No.	Name
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Recommended Mating Connectors:

Tyco Electronics AMP 179228-3 (crimp-type connector) 175778-3 (crimp-type connector) 173977-3 (press-fit connector)

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Note: the values in the parenthesis apply to the EE-SX4019-P2.

CAT. No. E934-E2-01

Photomicrosensor-Transmissive - EE-SX3081/-SX4081

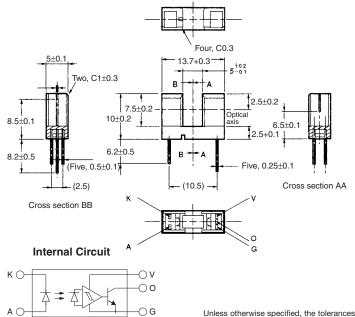
Features

- Incorporates an IC chip with a built-in detector element and amplifier.
- Incorporates a detector element with built-in temperature compensation circuit.
- A wide supply voltage range: 4.5 to 16 VDC
- Directly connects with C-MOS and TTL.
- High resolution with a 0.5-mm-wide sensing aperture.
- Dark ON model (EE-SX3081).
- Light ON model (EE-SX4081.

Specifications -

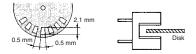
■ Absolute Maximum Ratings (Ta = 25°C)

	Item		Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Reverse Voltage	V _R	4 V
Detector	Power supply voltage	V _{cc}	16 V
	Output voltage	V _{OUT}	28 V
	Output current	lout	16 mA
	Permissible output dissipation	P _{OUT}	250 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)


Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

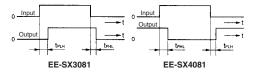
2. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

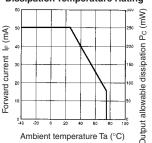

	Item		Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	IR	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ_{P}	940 nm typ.	I _F = 20 mA
Detector	Low-level output voltage	IL	0.12 V typ., 0.4 V max.	
	High-level output voltage	ID	15 V min.	
	Current consumption	Icc	3.2 mA., 10 mA max.	V _{CC} = 4.5 to 16 V
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 5 V$
LED current when output is OFF		I _{FT}	8 mA max.	V _{CC} = 4.5 to 16 V
LED current	LED current when output is ON			
Hysteresis		ΔH	15% typ.	V _{CC} = 4.5 to 16 V (see note 1)
Response frequency		f	3 kHz min.	$V_{\rm CC}$ = 4.5 to 16 V, I_F = 20 mA, $I_{\rm OL}$ = 16 mA (see note 2)
Response delay time		t _{PHL} (t _{PHL})	3 μs typ.	V_{CC} = 4.5 to 16 V, I_{F} = 20 mA, I_{OL} = 16 mA (see note 3)
Response delay time		t _{PHL} (t _{PHL})	20 µs typ.	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 4.5 \text{ to } 16 \text{ V} \text{, } I_F = 20 \text{ mA} \text{,} \\ I_{OL} = 16 \text{ mA} \text{ (see note 3)} \end{array}$

Note: All units are in millimetres unless otherwise indicated.

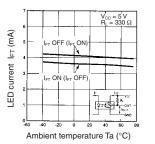
Terminal No.	Name
A	Anode
К	Cathode
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)


- Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
 - 2. The value of the response frequency is measured by rotating the disk as shown below.

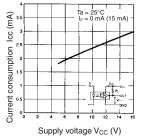
Unless otherwise specified, the tolerances are as shown below

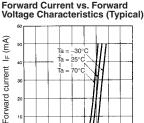

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

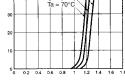
3. The following illustrations show the definition of response delay time. The value in the parentheses applies to the EESX4081.



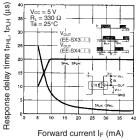
Note: The values in the parentheses apply to EE-SX4081.


Forward Current vs. Collector **Dissipation Temperature Rating**

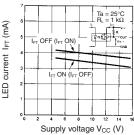



LED Current vs. Ambient Temperature Characteristics (Typical)

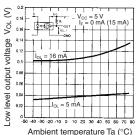
Current Consumption vs. Supply Voltage (Typical)

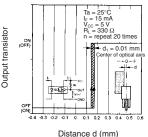

Forward voltage V_F (V)

Low-level Output Voltage vs. **Output Current (Typical)**



Output current I_C (mA)


Response Delay Time vs. Forward Current (Typical)


LED Current vs. Supply Voltage (Typical)

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Repeat Sensing Position Characteristics (Typical)

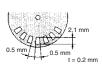
Photomicrosensor-Transmissive – EE-SX4235A-P2

Features

- Snap-in mounting model.
- Mounts to 1.0-, 1.2- and 1.6-mm-thick panels.
- High resolution with a 0.5-mm-wide sensing aperture.
- With a 5-mm-wide slot.
- Photo IC output signals directly connect with C-MOS and TTL.
- Connects to Tyco Electronics AMP's CT-series connectors.

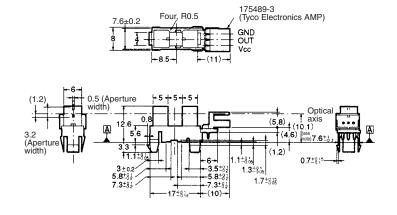
Specifications -

Absolute Maximum Ratings (Ta = 25°C)

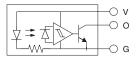

	Item		Symbol	Rated value
Power supply voltage	Power supply voltage		/ _{cc}	7 V
Output voltage		V	/ _{OUT}	28 V
Output current		lo	OUT	16 mA
Permissible output dissipation		P	out	250 mW (see note)
Ambient temperature	Operating	Т	Горг	-25°C to 75°C
	Storage	Т	lstg	-40°C to 85°C
Soldering temperature		Т	[sol	-

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C

■ Electrical and Optical Characteristics (Ta = 25°C, Vcc = 5 V ± 10%)


Item	Symbol	Value	Condition
Current consumption	I _{CC}	16.5 mA max.	With and without incident
Low-level output voltage	VoL	0.35 V max.	I _{OUT} = 16 mA with incident
High-level output voltage	V _{OH}	(V _{CC} x 0.9) V min.	$V_{OUT} = V_{CC}$ without incident, R _L = 47 k Ω
Response frequency	f	3 kHz min.	$V_{OUT} = V_{CC}, R_L = 47 \text{ k}\Omega$ (see note)

Note: The value of the response frequency is measured by rotating the disk as shown below.



Note: All units are in millimetres unless otherwise indicated.

Internal Circuit

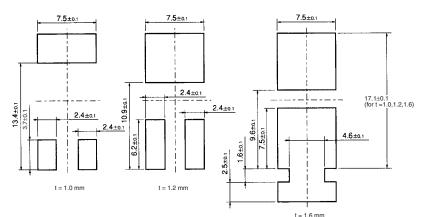
Note: The asterisked dimension is specified by datum A only.

Unless otherwise specified, the tolerances are shown below

Terminal No.	Name
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Recommended Mating Connectors:

Tyco Electronics AMP 179228-3 (crimp-type connector) 175778-3 (crimp-type connector) 173977-3 (press-fit connector)


Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Photomicrosensor-Transmissive – EE-SX4235A-P2

Engineering Data

Output Allowable Dissipation vs. Sensing Position Characteristics **Ambient Temperature Characteristics** (Typical) (Mm) V_{cc} Ta = R_i = cc = 5 V = 25°C = 47 kΩ $d_1 = 0 \pm 0.3 \text{ mm}$ 25 Output allowable dissipation Pc OFF 200 Output transistor of o 150 interrupting plate 100 50 t up 0 0L -40 -2 -20 20 -3 C 0 40 60 80 100 Ambient temperature Ta (°C) Distance d (mm)

Recommended Mounting Holes

- When mounting the Photomicrosensor to a panel with a hole opened by pressing, make sure that the hole has no burrs. The mounting strength of the Photomicrosensor will decrease if the hole has burrs.
- When mounting the Photomicrosensor to a panel with a hole opened by pressing, be sure to mount the Photomicrosensor on the pressing side of the panel.
- The mounting strength of the Photomicrosensor will increase if the Photomicrosensor is mounted to a panel with a hole that is only a little larger than the size of the Photomicrosensor, in which case, however, it will be difficult to mount the Photomicrosensor to the panel. The mounting strength of the Photomicrosensor will decrease if the Photomicrosensor is mounted to a panel with a hole that is comparatively larger than the size of the Photomicrosensor, in which case, however, it will be easy to mount the Photomicrosensor to the panel. When mounting the Photomicrosensor to a panel, open an appropriate hole for the Photomicrosensor according to the application.
- After mounting the Photomicrosensor to any panel, make sure that the Photomicrosensor does not wobble.
- When mounting the Photomicrosensor to a molding with a hole, make sure that the edges of the hole are sharp enough, otherwise the Photomicrosensor may fall out.

CAT. No. E936-E2-01

Photomicrosensor-Transmissive – EE-SX1070

Features

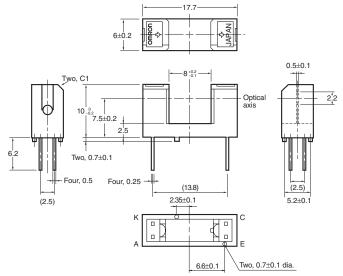
- Wide model with a 8-mm-wide slot.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications -

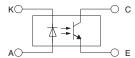
■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 95°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

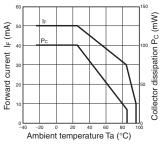

2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

3. Complete soldering within 10 seconds.

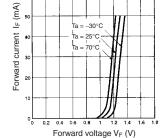

Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_F = 20 \text{ mA}, V_{CE} = 10 \text{ V}$
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 max.	$I_F = 20 \text{ mA}, I_L = 0.1 \text{ mA}$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CE} = 10 V
Rising time		tr	4 μs typ.	V_{CC} = 5 V. R_L = 100 Ω , I_L = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V. R_L = 100 $\Omega,~I_L$ = 5 mA

Note: All units are in millimetres unless otherwise indicated.


Internal Circuit

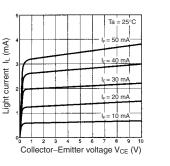
Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter


Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

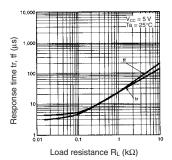
Forward Current vs. Collector Dissipation Temperature Rating

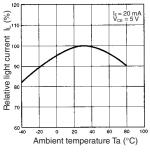
Light Current vs. Collector-Emitter

Voltage Characteristics (Typical)

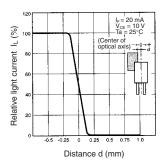


Forward Current vs. Forward

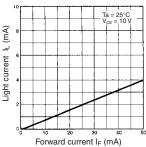

Voltage Characteristics (Typical)

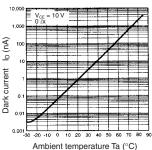

Relative Light Current vs. Ambi-

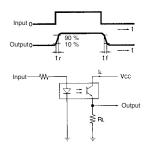
ent Temperature Characteristics (Typical)



Response Time vs. Load Resistance Characteristics (Typical)




Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time Measurement Circuit

Photomicrosensor-Transmissive - EE-SX3070/-SX4070

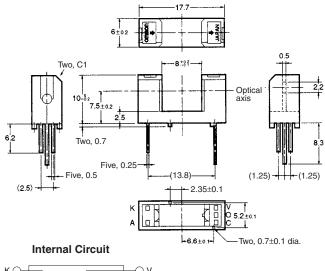
Features

- Incorporates an IC chip with a built-in detector element and amplifier.
- Incorporates a detector element with a built-in temperature compensation circuit.
- A wide supply voltage range: 4.5 to 16 VDC
- Directly connects with C-MOS and TTL.
- High resolution with a 0.5-mm-wide sensing aperture.
- Dark ON model (EE-SX3070)
- Light ON model (EE-SX4070)

Specifications -

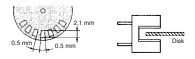
■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Reverse Voltage	V _R	4 V
Detector	Power supply voltage	V _{CC}	16 V
	Output voltage	Vout	28 V
	Output current	I _{OUT}	16 mA
	Permissible output dissipation	Pout	250 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature	•	Tsol	260°C (see note 2)


Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

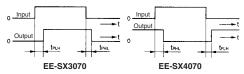
2. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)


	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	I _R	0.01 μA typ., 10 μA max.	$V_{\rm R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Low-level output voltage	I _L	0.12 V typ., 0.4 V max.	
	High-level output voltage	ID	15 V min.	
	Current consumption	Icc	3.2 mA., 10 mA max.	V _{CC} = 4.5 to 16 V
	Peak spectral sensitivity wavelength	λ _P	870 nm typ.	V _{CE} = 5 V
LED current when output is OFF		I _{FT}	10 mA max.	V _{CC} = 4.5 to 16 V
LED current when output is ON				
Hysteresis		ΔH	15% typ.	V_{CC} = 4.5 to 16 V (see note 1)
Response fre	quency	f	3 kHz min.	V_{CC} = 4.5 to 16 V, I_F = 20 mA, I_{OL} = 16 mA (see note 2)
Response del	ay time	t _{PHL} (t _{PHL})	3 μs typ.	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 4.5 \text{ to } 16 \text{ V} \text{, I}_{\text{F}} = 20 \text{ mA} \text{,} \\ I_{\text{OL}} = 16 \text{ mA} \text{ (see note 3)} \end{array}$
Response de	ay time	t _{PHL} (t _{PHL})	20 µs typ.	V_{CC} = 4.5 to 16 V, I_{F} = 20 mA, I_{OL} = 16 mA (see note 3)

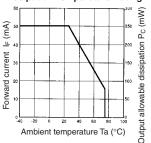
Note: All units are in millimetres unless otherwise indicated.

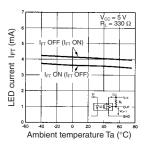
Terminal No.	Name
A	Anode
К	Cathode
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)


- Note:1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.
 - 2. The value of the response frequency is measured by rotating the disk as shown below.

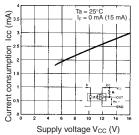
Unless otherwise specified, the tolerances are shown below

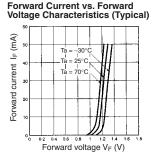
Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65


 The following illustrations show the definition of response delay time. The value in the parentheses applies to the EESX4070.

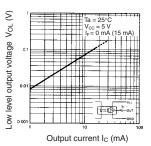

Transmssive Photomicrosensors

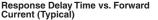
Note: The values in the parentheses apply to EE-SX4070.

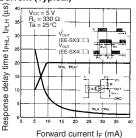

Forward Current vs. Collector Dissipation Temperature Rating



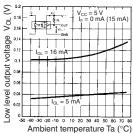
LED Current vs. Ambient Temperature Characteristics (Typical)

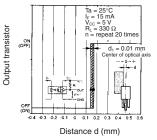



Current Consumption vs. Supply Voltage (Typical)



Low-level Output Voltage vs. Output Current (Typical)




LED Current vs. Supply Voltage (Typical)

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Repeat Sensing Position Characteristics (Typical)

Photomicrosensor-Transmissive – EE-SX1140

Features

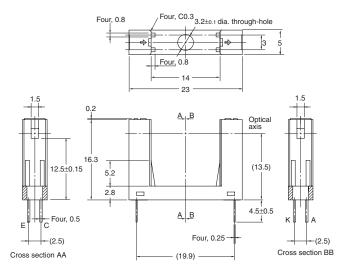
- General-purpose model with a 14-mm-wide slot.
- 16.3-mm-tall model with a deep slot.
- PCB mounting type.

Specifications -

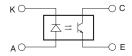
■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter Voltage	V _{CEO}	30 V
	Emitter-Collector Voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.


2. The pulse width is 10 μs maximum with a frequency of 100 Hz.

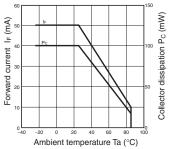
3. Complete soldering within 10 seconds.


■ Electrical and Optical Characteristics (Ta = 25°C)

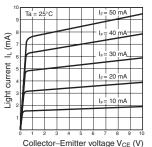
	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.4 mA min.	I_F = 20 mA, V_{CE} = 10 V
	Dark current	I _D	2 nA typ., 200 nA max.	V_{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F=20\ mA,\ I_L=0.1mA$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CE} = 10 V
Rising time		tr	4 µs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA

Note: All units are in millimetres unless otherwise indicated.

Internal Circuit

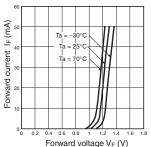


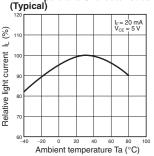
Unless otherwise specified, the tolerances are as shown below.

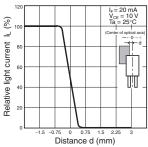

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

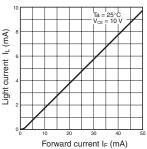
Terminal No.	Name
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

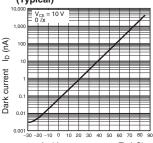
Forward Current vs. Collector Dissipation Temperature Rating



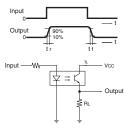

Response Time vs. Load Resistance Characteristics (Typical)


Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics



Light Current vs. Forward Current Characteristics (Typical)



Dark Current vs. Ambient Temperature Characteristics (Typical)

Ambient temperature Ta (°C)

Response Time Measurement Circuit

Transmssive Photomicrosensors

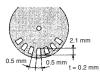
Photomicrosensor-Transmissive - EE-SX461-P11

Features

- Snap-in-mounting model.
- Mounts to 0.8- to 1.6-mm-thick panels.
- With a 15-mm-wide slot.
- Photo IC output signals directly connect with C-MOS and TTL

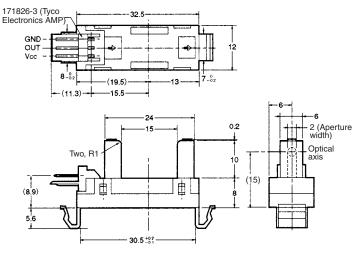
Specifications —

■ Absolute Maximum Ratings (Ta = 25°C)

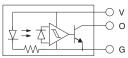

Item		Symbol	Rated value
Power supply voltage		V _{cc}	7 V
Output voltage		Vout	28 V
Output current		I _{OUT}	16 mA
Permissible output dissipati	on	Pout	250 mW (see note)
Ambient temperature	Operating	Topr	-25°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature	·	Tsol	-

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

■ Electrical and Optical Characteristics (Ta = 25°C, Vcc = 5 V ± 10%)


Item	Symbol	Value	Condition
Current consumption	I _{CC}	35 mA max.	With and without incident
Low-level output voltage	V _{OL}	0.3 V max.	I _{OUT} = 16 mA with incident
High-level output voltage	V _{OH}	(V _{CC} x 0.9) V min.	$V_{OUT} = V_{CC}$ without incident, $R_L = 47 \ k\Omega$
Response frequency	f	3 kHz min.	V_{OUT} = $V_{\text{CC},}R_{\text{L}}$ = 47 k Ω (see note)

Note: The value of the response frequency is measured by rotating the disk as shown below.



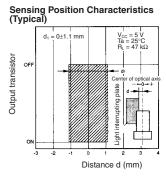
Note: All units are in millimetres unless otherwise indicated.

Internal Circuit

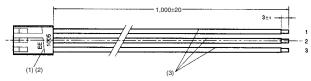
Unless otherwise specified, the tolerances are shown below

Terminal No.	Name
V	Power supply (Vcc)
0	Output (OUT)
G	Ground (GND)

Recommended Mating Connectors:


Tyco Electronics AMP

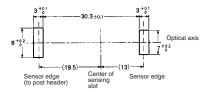
OMRON


171822-3 (crimp-type connector) 172142-3 (crimp-type connector) EE-1005 (with harness)

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Output Allowable Dissipation vs. Ambient Temperature Characteristics Output allowable dissipation Pc (mW) 25/ 200 150 100 50 -40 +20 0 20 40 60 100 80 Ambient temperature Ta (°C)

EE-1005 Connector



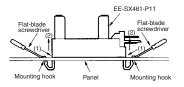
Number	Name	Model	Quantity	Maker
1	Receptacle housing	171822-3	1	Tyco Electronics AMP
2	Receptacle contact	170262-1	3	Tyco Electronics AMP
3	Lead wire	UL1007 AWG24	3	-

Wiring

Connector circuit no.	Lead wire colour	Output when connected to EE-SX461-P11
1	Red	V _{CC}
2	Orange	OUT
3	Yellow	GND

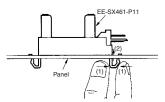
Recommended Mounting Hole Dimensions and Mounting and Dismounting Method

The Photomicrosensor can be mounted to 0.8- to 1.6-mm-thick panels.

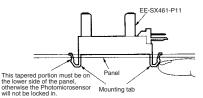

Refer to the above mounting hole dimensions and open the mounting holes in the panel to which the Photomicrosensor will be mounted.

Insert into the holes the Photomicrosensor's mounting portions with a force of three to five kilograms but do not press in the Photomicrosensor at one time. The Photomicrosensor can be easily mounted by inserting the mounting portions halfway and then slowly pressing the Photomicrosensor onto the panel.

There are two ways to dismount the Photomicrosensor. Refer to the following.


Dismounting with Screwdriver

Press the mounting hooks of the Photomicrosensor with a flatblade screwdriver as shown in the following illustration and pull up the Photomicrosensor


Dismounting by Hand

Squeeze the mounting tabs as shown in the following illustration and press the mounting tabs upwards.

Pressed mounting holes are ideal for mounting the Photomicrosensor. When mounting the Photomicrosensor to a panel that has pressed mounting holes for the Photomicrosensor, be sure to mount the Photomicrosensor on the pressing side of the panel, otherwise it may be difficult to mount the Photomicrosensor and an insertion force of five to six kilograms may be required.

When mounting the Photomicrosensor to a panel that has mounting holes opened by pressing, make sure that the mounting holes have no burrs, otherwise the lock mechanism of the Photomicrosensor will not work perfectly. After mounting the Photomicrosensor to a panel, be sure to check if the lock mechanism is working perfectly.

Photomicrosensor-Actuator Mounted – EE-SA102

Features

- An actuator can be attached.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

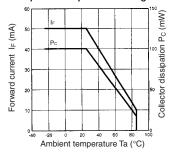
Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

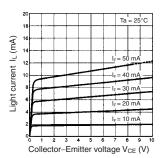

2. The pulse width is 10 μs maximum with frequency of 100 Hz.

3. Complete soldering within 10 seconds.

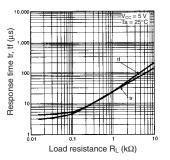
■ Electrical and Optical Characteristics (Ta = 25°C)

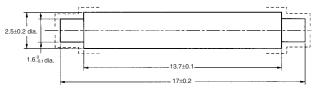
	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_{R} = 4 V$
	Peak emission wavelength	λρ	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 mA min., 14 mA max.	$I_F=20\ mA,\ V_{CE}=10\ V$
	Dark current	ID	2 nA typ., 200 nA max.	V_{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F=20~mA,~I_L=0.1~\mu A$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CF} = 10 \text{ V}$
Rising time		tr	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA

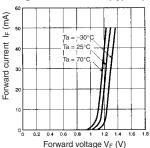

Note: All units are in millimetres unless otherwise indicated.

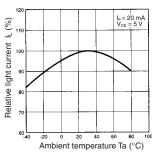

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

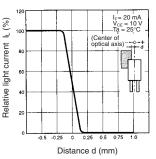
Unless otherwise specified, the tolerances are ±0.2 mm.

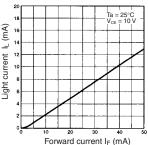

Forward Current vs. Collector Dissipation Temperature Rating

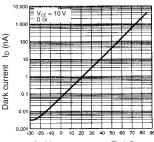

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)

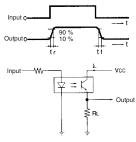

Actuator Dimensions


Forward Current vs. Forward Voltage Characteristics (Typical)


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)

Light Current vs. Forward Current Characteristics (Typical)



Dark Current vs. Ambient Temperature Characteristics (Typical)

Ambient temperature Ta (°C)

Response Time Measurement Circuit

Note: 1. Make sure that the portions marked with dotted lines have no burrs.

 The material of the actuator must be selected by considering the infrared permeability of the actuator.

CAT. No. E943-E2-01

Photomicrosensor-Actuator Mounted – EE-SA103

Features

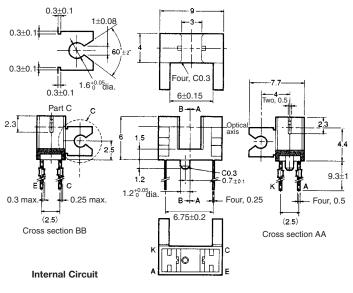
- An actuator can be attached.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

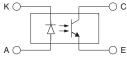
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

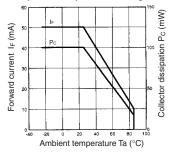

2. The pulse width is 10 μs maximum with frequency of 100 Hz.


3. Complete soldering within 10 seconds.

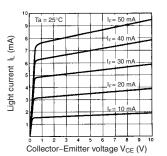
■ Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λρ	940 m typ.	I _F = 20 mA
Detector	Light current	IL.	0.5 µA min., 14 µA max.	$I_F=20\ mA,\ V_{CE}=10\ V$
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 10$ V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F=20~mA,~I_L=0.1~\mu A$
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CF} = 10 \text{ V}$
Rising time		tr	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA

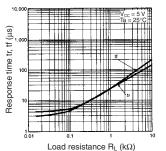
Note: All units are in millimetres unless otherwise indicated.

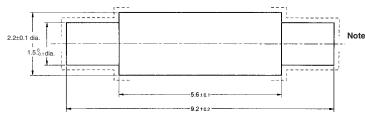


Unless otherwise specified, the tolerances are as shown below.

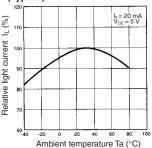

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

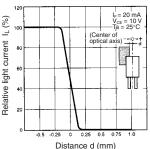
Terminal No.	Name
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65


Forward Current vs. Collector Dissipation Temperature Rating


Light Current vs. Collector–Emitter Voltage Characteristics (Typical)

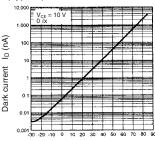
Response Time vs. Load Resistance Characteristics (Typical)

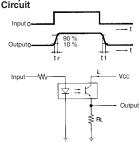



Voltage Characteristics (Typical) (mA) <u>_</u> Ta = -30°C Forward current 25°C Та Ta = 70 30 20 10 05 1.4 1.6 0.2 0.4 0.6 0.8 12 1.8 Forward voltage V_F (V)

Forward Current vs. Forward

Relative Light Current vs. Ambient Temperature Characteristics (Typical)




Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Ambient temperature Ta (°C) Response Time Measurement

Note: 1. Make sure that the portions marked with dotted lines have no burrs.

 The material of the actuator must be selected by considering the infrared permeability of the actuator.

Actuator - Photomicrosensors Actuator - Photomicrosensors

Photomicrosensor-Actuator Mounted – EE-SA104

Features

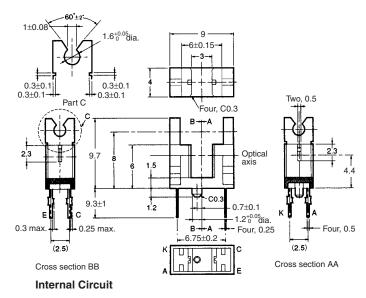
- An actuator can be attached.
- PCB mounting type.
- High resolution with a 0.5-mm-wide aperture.

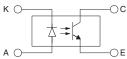
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	IF	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-30°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.


2. The pulse width is 10 μs maximum with frequency of 100 Hz.


3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 m typ.	$I_F = 20 \text{ mA}$
Detector	Light current	l <u>i</u>	0.5 mA min., 14 mA max.	$I_F=20\ mA,\ V_{CE}=10\ V$
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 10$ V, 0 ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F = 20$ mA, $I_L = 0.1$ mA
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CF} = 10 \text{ V}$
Rising time		tr	4 µs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA
Falling time		tf	4 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 5 mA

Note: All units are in millimetres unless otherwise indicated.

Unless otherwise specified, the tolerances are as shown below.

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

Terminal No.	Name
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

I⊧ (mA)

Forward current

50

40

30

20

°0

(Typical)

120

(%)

_

Relative light current

90

80

70

60 ∟ -40

(Typical)

120

80

60

40

20

-0.5 -0.25

(%)

_

Relative light current

-20 0

0.2 0.4 0.6 0.8

Forward Current vs. Forward

Voltage Characteristics (Typical)

Ta = -30°C

 $T_{2} = 70$

Ta = 25°C

1.2 1.4 1.6 1.8

 $I_F = 20 \text{ mA}$ $V_{CE} = 5 \text{ V}$

 $I_F = 20 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $Ta = 25^{\circ}\text{C}$

Forward voltage V_F (V)

Relative Light Current vs. Ambi-

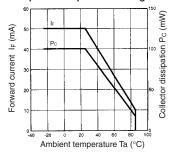
ent Temperature Characteristics

20 40 60 80 100

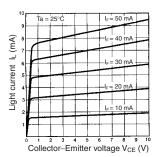
Sensing Position Characteristics

Ambient temperature Ta (°C)

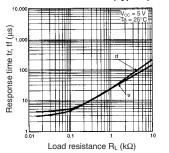
(Center of


0.25 0.5 0.75 1.0

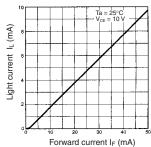
Distance d (mm)

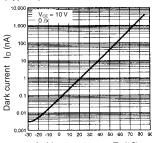

optical axis)

Engineering Data

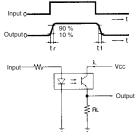

Forward Current vs. Collector Dissipation Temperature Rating

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)



Light Current vs. Forward Current Characteristics (Typical)



Dark Current vs. Ambient Temperature Characteristics (Typical)

Ambient temperature Ta (°C)

Response Time Measurement Circuit

- Note: 1. Make sure that the portions marked with dotted lines have no burrs.
 - The material of the actuator must be selected by considering the infrared permeability of the actuator.

CAT. No. E945-E2-01

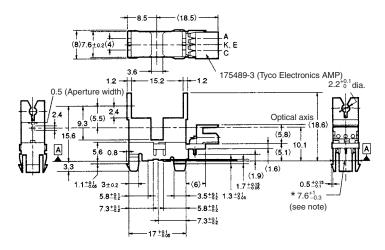
Photomicrosensor-Actuator Mounted – EE-SA107-P2

Features

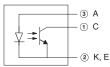
- An actuator can be attached.
- Snap-in mounting model.
- Mountable to 1.0, 1.2 and 1.6 mm thick boards.
- Connects to Tyco Electronics AMP's CT series connectors.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)


Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note)
	Pulse forward current	I _{FP}	-
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{ECO}	30 V
	Emitter-Collector voltage	V _{CEO}	5 V
	Collector current	I _C	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Ambient temperature Operating		-25°C to 85°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	-

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.


■ Electrical and Optical Characteristics (Ta = 25°C)

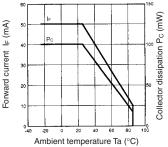
Item		Symbol	Value	Condition
Emitter	Emitter Forward voltage		1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 m typ.	I _F = 30 mA
Detector	Light current	l <u>i</u>	0.5 mA min., 14 mA max.	$I_F=20\ mA,\ V_{CE}=5\ V$
	Dark current	ID	200 nA max.	V _{CE} = 10 V, 0ℓx
	Leakage current	I _{LEAK}	-	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	I_F = 20 mA, I_L = 0.3 mA
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CE} = 5 V
Rising time		tr	8 μs typ.	$V_{CC}=5~V,~R_L=100~\Omega,~I_L=1~mA$
Falling time		tf	8 μs typ.	V_{CC} = 5 V, R_L = 100 $\Omega,~I_L$ = 1 mA

Note: All units are in millimetres unless otherwise indicated.

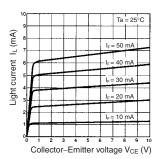
Internal Circuit

Note: The asterisked dimension is specified by datum a only.

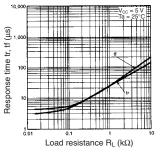
Recommended Mating Connectors:

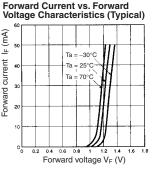

Tyco Electronics AMP 173977-3 (press-fit connector) 175778-3 (crimp connector) 179228-3 (crimp connector)

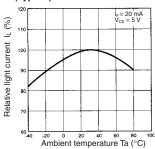
Terminal No.	Name	
A	Anode	
С	Collector	
K, E	Cathode, Emitter	

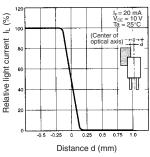

Unless otherwise specified, the tolerances are as shown below.

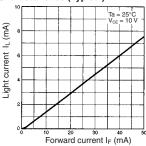
Terminal No.	Name
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

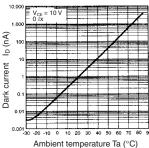

Forward Current vs. Collector Dissipation Temperature Rating

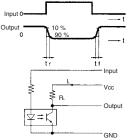

Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)


Recommended Mounting Holes Refer to EE-SA407-


Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Response Time Measurement Circuit

Actuator Dimensions 3.0.2 dia. 240.1 dia

Note: 1. Make sure that the portions marked with dotted lines have no burrs.
 2. The material of the actuator must be selected by considering the infrared permeability of the actuator.

Actuator – Photomicrosensors

CAT. No. E946-E2-01

Photomicrosensor-Actuator Mounted - EE-SA407-P2

Features

- An actuator can be attached.
- Snap-in mounting model.
- Mounts to 1.0-, 1.2- and 1.6-mm-thick panels.
- High resolution with a 0.5-mm-wide sensing aperture.
- With a 3.6-mm-wide slot.
- Photo IC output signals directly connect with logic circuit and TTL.
- Connects to Tyco Electronics AMP's CT-series connectors.

Specifications -

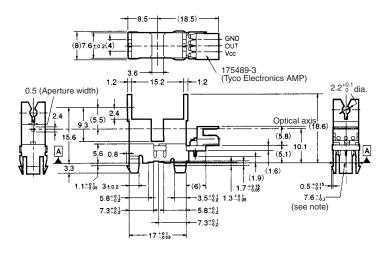
■ Absolute Maximum Ratings (Ta = 25°C)

Item			Symbol	Rated value
Power supply voltage		١	V _{cc}	7 V
Output voltage		١.	Vout	28 V
Output current		l	OUT	16 mA
Permissable output dissipation		F	Роит	250 mW (see note)
Ambient temperature	Ambient temperature Operating		Topr	-20°C to 75°C
Storage		Т	Tstg	-40°C to 85°C
Soldering temperature		Т	Tsol	-

Note: Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

■ Electrical and Optical Characteristics (Ta = 25°C, Vcc = 5 V ±10%)

Item	Symbol	Value	Condition
Current consumption	Icc	30 mA max.	With and without incident
Low-level output voltage	V _{OL}	0.35 V max.	I _{OUT} = 16 mA with incident
High-level output voltage	V _{OH}	(V _{CC} x 0.9) V min.	V_{OUT} = V_{CC} without incident, R_{L} = 47 $k\Omega$
Response frequency	f	3 kHz min.	V_{OUT} = $V_{\text{CC}},~R_{\text{L}}$ = 47 k Ω (see note)


Note: The value of the response frequency is measured by rotating the disk as shown below.

0.2 mm



Note: All units are in millimetres unless otherwise indicated.

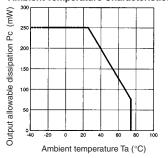
Internal Circuit

Terminal No.	Name	
V	Power Supply (V _{CC})	
0	Output (OUT)	
G	Ground(GND)	

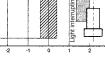
Recommended Mating Connectors: Tyco Elctronics AMP 179228-3

179228-3 (insulation displacement - type connector)

175778-3 (crimp-type connector)

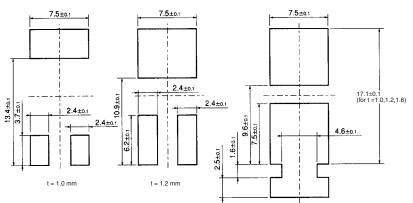

173977-3 (crimp-type connector)

Note: The dimension is specified by datum A only.


Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Output Allowable Dissipation vs. Ambient Temperature Characteristics

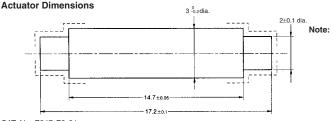


Sensing Position Characteristics (Typical)

Distance d (mm)

Recommended Mounting Holes

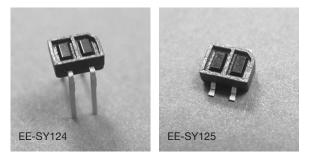
0


.3

- When mounting the Photomicrosensor to a panel with a hole opened by pressing, make sure that the hole has no burrs. The mounting strength of the Photomicrosensor will decrease if the hole has burrs.
- When mounting the Photomicrosensor to a panel with a hole opened by pressing, be sure to mount the Photomicrosensor on the pressing side of the panel.
- The mounting strength of the Photomicrosensor will increase if the Photomicrosensor is mounted to a panel with a hole that is only a little larger than the size of the Photomicrosensor, in which case, however, it will be difficult to mount the Photomicrosensor to the panel. The mounting strength of the

Photomicrosensor will decrease if the Photomicrosensor is mounted to a panel with a hole that is comparatively larger than the size of the Photomicrosensor, in which case, however, it will be easy to mount the Photomicrosensor to the panel. When mounting the Photomicrosensor to a panel, open an appropriate hole for the Photomicrosensor according to the application.

- After mounting the Photomicrosensor to any panel, make sure that the Photomicrosensor does not wobble.
- When mounting the Photomicrosensor to a molding with a hole, make sure that the edges of the hole are sharp enough, otherwise the Photomicrosensor may come fall out.


- Note: 1. Make sure that the portions marked with dotted lines have no burrs.
 - 2. The material of the actuator must be selected by considering the infrared permeability of the actuator.

CAT. No. E947-E2-01

Photomicrosensor-Reflective - EE-SY124 / EE-SY125

Features

- Ultra-compact model.
- PCB Surface mounting (SY125).
- Through hole mount (SY124).

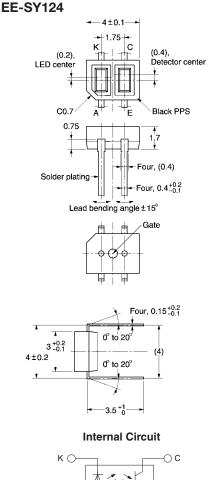
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse foward current	IFP	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	5 V
	Collector current	Ic	20 mA
	Collector dissipation	Pc	75 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 85°C
	Storage	Tstg	-40°C to 100°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

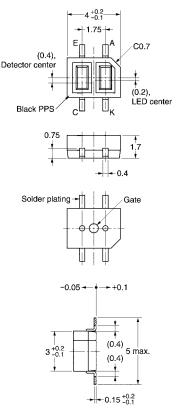
2. The pulse width is 10 μs maximum with frequency of 100 Hz.

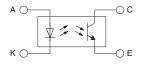

3. Complete soldering within 10 seconds.

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	l _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 4 \text{ mA}$
Detector	Light current	IL	50 μA min., 300 μA max.	$ I_F = 4 \text{ mA}, V_{CE} = 2 \text{ V} $ Aluminum-deposited surface, d = 1 mm (see note 1)
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0ℓx
	Leakage current	I _{LEAK}	200 nA max.	$I_F = 4 \text{ mA}, V_{CE} = 2 \text{ V}$ with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λ _P	930 nm typ.	$V_{CF} = 10 V$
Rising time		tr	35 µs typ.	V_{CC} = 2 V, R_L = 1 k Ω , I_L = 100 μA
Falling time		tf	25 µs typ.	V_{CC} = 2 V, R_L = 1 k\Omega, I_L = 100 μA

Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

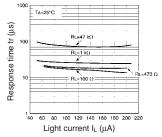

Note: All units are in millimetres unless otherwise indicated.

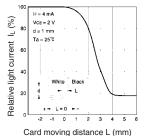


Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

EE-SY125

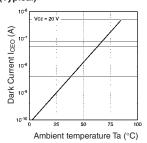
Internal Circuit


Unless otherwise specified, the tolerances are ±0.15 mm.

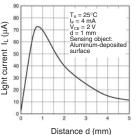

Ambient Temperature Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

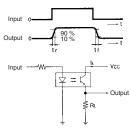
Relative Collector Current vs. Card Moving Distance (2)

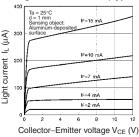

Characteristics (Typical) 900 $Ta = 25^{\circ}C$ $V_{CE} = 2 V$ d = 1 mm800 (MA) 700 Sensing object: Aluminum-deposited surface 600 _ ight current 500 400 300 200 100

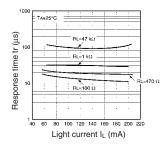
Light Current vs. Forward Current

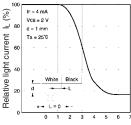

5 10 15 20 25 30 Forward current I_F (mA)

Dark Current vs. Ambient Temperature Characteristics (Typical)


°ò

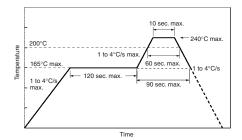

Sensing Distance Characteristics (Typical)


Response Time Measurement Circuit


Light Current vs. Collector–Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Relative Light Current vs. Card Moving Distance (1)


Card moving distance L (mm)

Precautions

Soldering Information

Reflow soldering

 Set the reflow oven so that the temperature profile shown in the following chart is obtained for the upper surface of the product being soldered.

Manual soldering

- Use a soldering iron of less than 25 W, and keep the temperature of the iron tip at 260°C or below.
- · Solder each point for a maximum of three seconds.
- After soldering, allow the product to return to room temperature before handling it.

Storage

To protect the product from the effects of humidity until the package is opened, dry-box storage is recommended. If this is not possible, store the product under the following conditions:

Temperature: 5 to 30°C

Humidity: 70% max.

The product is packed in a humidity-proof envelope. Reflow soldering must be done within 48 hours after opening the envelope, during which time the product must be stored at 5 to 25°C at 60% maximum humidity.

If it is necessary to store the product after opening the envelope, use dry-box storage or reseal the envelope at 5 to 30° C at 70% maximum humidity within two weeks.

Baking

If a product has remained packed in a humidity-proof envelope for six months or more, or if more than 48 hours have lapsed since the envelope was opened, bake the product under the following conditions before use only one time:

Bulk:125°C for 16 to 24 hours

CAT. No. E948-E2-01

Photomicrosensor-Reflective – EE-SY193

Features

- Ultra-compact model.
- PCB surface mounting type.

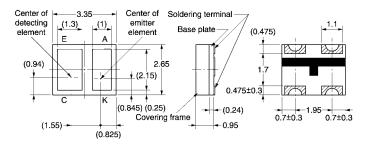
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

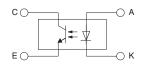
Item		Symbol	Rated value
Emitter	Forward current	I _F	25 mA (see note 1)
	Pulse foward current	I _{FP}	100 mA (see note 2)
	Reverse Voltage	V _R	6 V
Detector	Collector-Emitter voltage	V _{CEO}	18 V
	Emitter-Collector voltage	V _{ECO}	4 V
	Collector current	Ic	20 mA
	Collector dissipation	P _C	75 mW (see note 1)
Ambient temperature	Operating	Topr	-30°C to 80°C
	Storage	Tstg	-40°C to 85°C
	Reflow soldering	Tsol	220°C (see note 3)
	Manual soldering	Tsol	300°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

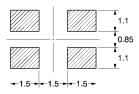
2. Duty: 1/100; Pulse width: 0.1 ms.


3. Complete soldering within 10 seconds for reflow soldering and within 3 seconds for manual soldering.

■ Electrical and Optical Characteristics (Ta = 25°C)

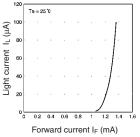

	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.1 V typ., 1.3 V max.	$I_F = 4 \text{ mA}$
	Reverse current	I _R	10 µA max.	$V_R = 6 V$
	Peak emission wavelength	λρ	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	100 μA min., 150 μA typ., 360 μA max.	Aluminum-deposited surface, $I_F = 4 \text{ mA}, V_{CE} = 2 \text{ V}, d = 1 \text{ mm}$ (see note 1)
	Dark current	ID	100 nA max.	$V_{CE} = 10 \text{ V}, 0 \ell x$
	Leakage current	I _{LEAK}	1 μA max.	$I_F = 4 \text{ mA}, V_{CE} = 2 \text{ V}$
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λ _P	900 nm typ.	-
Rising time		tr	25 µs typ.	V_{CC} = 2 V, R_L = 1 $k\Omega$
Falling time		tf	30 µs typ.	V_{CC} = 2 V, R_L = 1 k Ω

Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

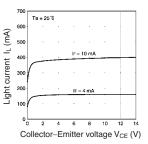

Note: All units are in millimetres unless otherwise indicated.

Internal Circuit

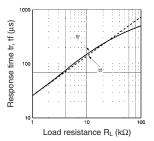

Recommended soldering patterns


Unless otherwise specified, the tolerances are ± 0.2 mm.

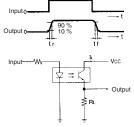
Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

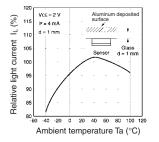

Forward Current vs. Collector **Dissipation Temperature Rating**

Forward Current vs. Forward Voltage Characteristics (Typical)

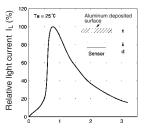


Light Current vs. Collector-Emitter Relative Light Current vs. Ambient Temperature Characteristics (Typical)

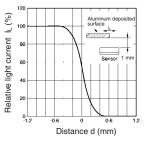



Voltage Characteristics (Typical)

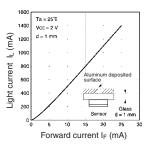
Response Time vs. Load Resistance Characteristics (Typical)



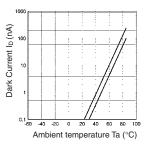
Response Time Measurement Circuit



Sensing Distance Characteristics (Typical)

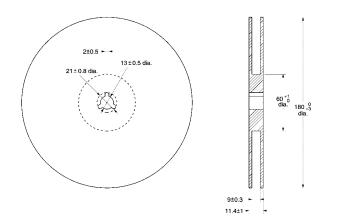


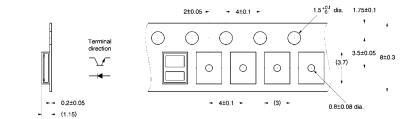
Sensing Position Characteristics (Typical)



Reflective – Photomicrosensors

Light Current vs. Forward Current **Characteristics (Typical)**

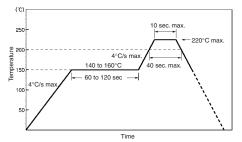

Dark Current vs. Ambient Temperature Characteristics (Typical)


Tape and Reel

Unit: mm (inch).

Reel

Tape configuration


Tape quantity 3,000 pcs./reel

Precautions

Soldering Information

Reflow soldering

- The following soldering paste is recommended:
 - Melting temperature: 178 to 192°C
- \bullet The recommended thickness of the metal mask for screen printing is between 0.2 and 0.25 mm.
- Set the reflow oven so that the temperature profile shown in the following chart is obtained for the upper surface of the product being soldered.

Manual soldering

- Use "Sn 60" (60% tin and 40% lead) or solder with silver content.
- Use a soldering iron of less than 25W, and keep the temperature of the iron tip at 300°C or below.
- Solder each point for a maximum of three seconds.
- After soldering, allow the product to return to room temperature before handling it.

Storage

To protect the product from the effects of humidity until the package is opened, dry-box storage is recommended. If this is not possible, store the product under the following conditions:

Temperature: 10 to 30°C

Humidity: 60% max.

The product is packed in a humidity-proof envelope. Reflow soldering must be done within 48 hours after opening the envelope, during which time the product must be stored under 30°C at 80% maximum humidity.

If it is necessary to store the product after opening the envelope, use dry-box storage or reseal the envelope.

Baking

If a product has remained packed in a humidity-proof envelope for six months or more, or if more than 48 hours have lapsed since the envelope was opened, bake the product under the following conditions before use:

> Reel: 60°C for 24 hours or more Bulk: 80°C for 4 hours or more

Photomicrosensor-Reflective – EE-SY171

Features

■ 3 mm tall, thin model.

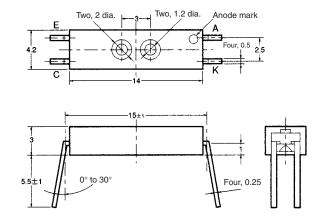
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

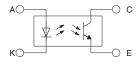
Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 85°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with frequency of 100 Hz.


3. Complete soldering within 10 seconds.

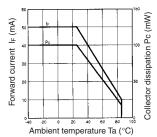
■ Electrical and Optical Characteristics (Ta = 25°C)


	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	l _R	0.01 µA typ., 10 µA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL	50 μA min., 500 μA max.	$\label{eq:l_F} \begin{array}{l} I_F = 20 \text{ mA}, \ V_{CE} = 10 \text{ V} \\ \text{White paper with a reflection ratio} \\ \text{of 90\%, d} = 3.5 \text{ mm} \ (\text{see note}) \end{array}$
	Dark current	I _D	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0ℓx
	Leakage current	I _{LEAK}	2 µA max.	$I_F = 20 \text{ mA}, V_{CE} = 10 \text{ V}$ with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CC} = 10 \text{ V}$
Rising time		tr	30 µs typ.	$V_{CC}=5~V,~R_L=1~k\Omega,~I_L=1~mA$
Falling time		tf	30 µs typ.	V_{CC} = 5 V, R_L = 1 k Ω , I_L = 1 mA

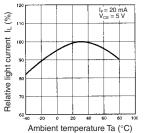
Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

Note: All units are in millimetres unless otherwise indicated.

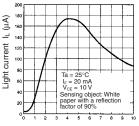
Internal Circuit



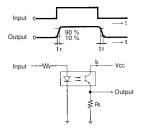
Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter


Unless otherwise specified, the tolerances are as shown below.

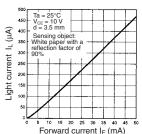
Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65


Forward Current vs. Collector Dissipation Temperature Rating

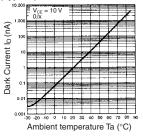
Relative Light Current vs. Ambient Temperature Characteristics (Typical)

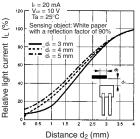


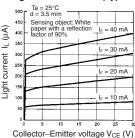
Sensing Distance Characteristics (Typical)

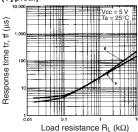


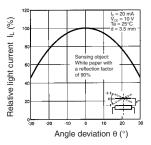
Distance d (mm)


Response Time Measurement Circuit


Light Current vs. Forward Current Characteristics (Typical)


Dark Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Collector–Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Sensing Angle Characteristics (Typical)

CAT. No. E951-E2-01

Photomicrosensor-Reflective – EE-SY169A

Features

- High-quality model with plastic lenses.
- Highly precise sensing range with a tolerance of ±0.6 mm horizontally and vertically.
- Convergent reflective model with infrared LED.

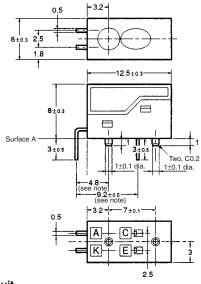
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

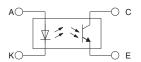
Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	3 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	0°C to 70°C
	Storage	Tstg	-20°C to 80°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 µs maximum with frequency of 100 Hz.


3. Complete soldering within 10 seconds.

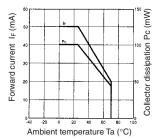
■ Electrical and Optical Characteristics (Ta = 25°C)


	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.5 V max.	I _F = 30 mA
	Reverse current	I _R	10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λρ	920 nm typ.	I _F = 20 mA
Detector	Light current	IL.	16 μA min., 2,000 μA max.	$I_F = 20 \text{ mA}, V_{CE} = 5 \text{ V}$ White paper with a reflection ratio of 90%, d = 4 mm (see note)
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 5 V, 0 ℓx
	Leakage current	I _{LEAK}	2 µA max.	$I_F = 20$ mA, $V_{CE} = 5$ V with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CC} = 5 V
Rising time		tr	30 µs typ.	V_{CC} = 5 V, R_L = 1 k Ω , I_L = 1 mA
Falling time		tf	30 µs typ.	$V_{CC}=5~V,~R_L=1~k\Omega,~I_L=1~mA$

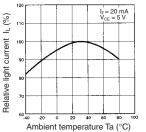
Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

Note: All units are in millimetres unless otherwise indicated.

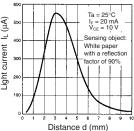
Internal Circuit

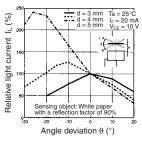


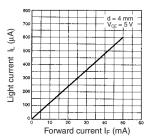
Note:	These dimensions are for the surface A. Other lead wire
	pitch dimensions are for the housing surface.

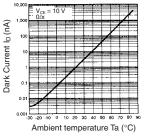

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

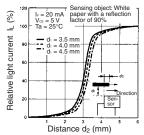
Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

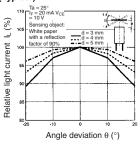

Forward Current vs. Collector Dissipation Temperature Rating

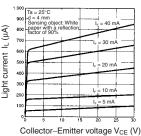

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

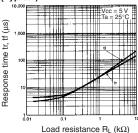

Sensing Distance Characteristics (Typical)

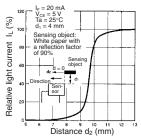

Sensing Angle Characteristics (Typical)

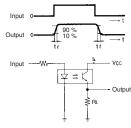

Light Current vs. Forward Current Characteristics (Typical)


Dark Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)

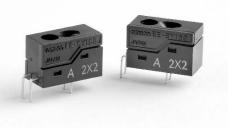



Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)

Sensing Position Characteristics (Typical)

Response Time Measurement Circuit



Reflective – Photomicrosensors

Photomicrosensor-Reflective – EE-SY169B

Features

- High-quality model with plastic lenses.
- Highly precise sensing range with a tolerance of ±0.6 mm horizontally and vertically.
- With a red LED sensing dyestuff-type links.
- Limited reflective model.
- Higher gain than EE-SY169.
- Possible to get the same I_L as EE-SY169 with I_F=10 mA. (half of EE-SY169 condition).

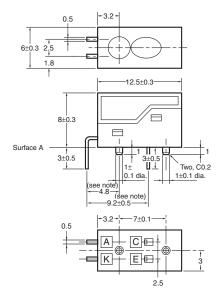
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

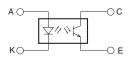
Item		Symbol	Rated value
Emitter	Forward current	l _F	40 mA (see note 1)
	Pulse foward current	I _{FP}	300 mA (see note 2)
	Reverse Voltage	V _R	3 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	0°C to 70°C
	Storage	Tstg	-20°C to 80°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with frequency of 100 Hz.


3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)


	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.85 V typ., 2.3 V max.	I _F = 20 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	V _R = 3 V
	Peak emission wavelength	λ _P	660 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL.	16 μA min., 2,000 μA max.	$\label{eq:l_F} I_F = 10 \text{ mA}, \ V_{CE} = 5 \text{ V} \\ \text{White paper with a reflection ratio} \\ \text{of 90\%, d} = 4 \text{ mm (see note)} \\ \end{array}$
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 5 V$, $0 \ell x$
	Leakage current	I _{LEAK}	2 µA max.	$I_F = 20$ mA, $V_{CE} = 10$ V with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CE} = 5 V$
Rising time		tr	30 µs typ.	V_{CC} = 5 V, R_L = 1 k Ω , I_L = 1 mA
Falling time		tf	30 µs typ.	V_{CC} = 5 V, R_L = 1 kΩ, I_L = 1 mA

Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

Note: All units are in millimetres unless otherwise indicated.

Internal Circuit

Note: T	hese dimensions are for the surface A. Other lead w	vire
р	itch dimensions are for the housing surface.	

Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

(F)1,00

600

400

201

(Typical)

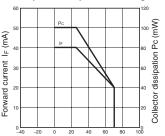
V_{CE} 0/x

10,000

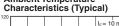
1,000

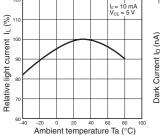
10

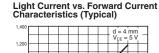
0.


0.0

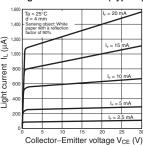
__ 800


-ight current

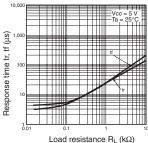

Engineering Data


Forward Current vs. Collector Dissipation Temperature Rating

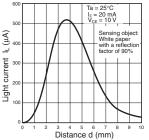
Ambient temperature Ta (°C) Relative Light Current vs. Ambient Temperature

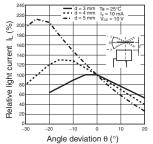


Forward current I_F (mA)


Dark Current vs. Ambient

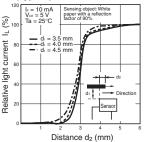
Temperature Characteristics


Light Current vs. Collector–Emitter Voltage Characteristics (Typical)

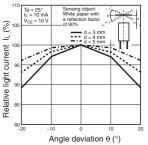

Response Time vs. Load Resistance Characteristics (Typical)

Sensing Distance Characteristics (Typical)

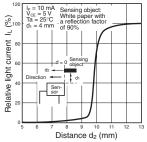
Sensing Angle Characteristics (Typical)

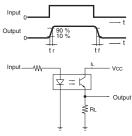


Sensing Position Characteristics (Typical)


40 50 60 70 80 90

10 20 30


Ambient temperature Ta (°C)


Sensing Angle Characteristics (Typical)

Sensing Position Characteristics (Typical)

Response Time Measurement Circuit

CAT. No. E953-E2-01

Photomicrosensor-Reflective – EE-SY113

Features

 Compact reflective Photomicrosensor (EE-SY110) with a moulded housing and dust-tight cover.

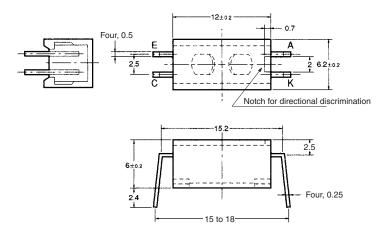
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

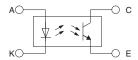
Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 80°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with a frequency of 100Hz.


3. Complete soldering within 10 seconds.

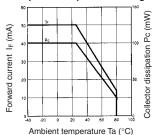
■ Electrical and Optical Characteristics (Ta = 25°C)


	Item	Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λρ	940 nm typ.	I _F = 20 mA
Detector	Light current	IL.	160 μA min., 1,600 μA max.	$\label{eq:lF} \begin{array}{l} I_F = 20 \text{ mA}, \ V_{CE} = 10 \text{ V} \\ \text{White paper with a reflection ratio} \\ \text{of 90\%, d} = 4.4 \text{ mm (see note)} \end{array}$
	Dark current	ID	2 nA typ., 200 nA max.	$V_{CE} = 10 \text{ V}, 0 \ell x$
	Leakage current	I _{LEAK}	2 µA max.	$I_F = 20$ mA, $V_{CE} = 10$ V with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	V _{CC} = 10 V
Rising time		tr	30 µs typ.	V_{CC} = 5 V, R_L = 1 k Ω , I_L = 1 mA
Falling time		tf	30 µs typ.	V_{CC} = 5 V, R_L = 1 k $\Omega,~I_L$ = 1 mA

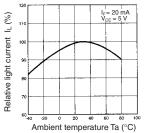
Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

Note: All units are in millimetres unless otherwise indicated.

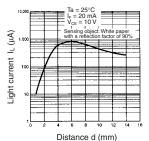
Internal Circuit

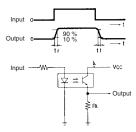


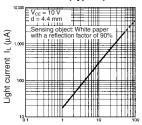
Unless otherwise specified, the tolerances are as shown below.


Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

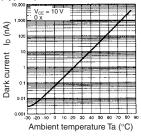
Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65


Forward Current vs. Collector Dissipation Temperature Rating

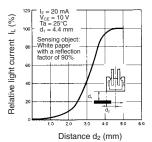

Relative Light Current vs. Ambient Temperature Characteristics (Typical)


Sensing Distance Characteristics (Typical)

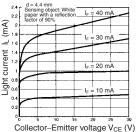
Response Time Measurement Circuit

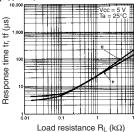


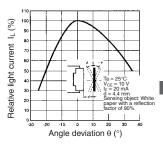
Light Current vs. Forward Current Characteristics (Typical)



Forward current I_F (mA)


Dark Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Light Current vs. Collector–Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Sensing Angle Characteristics (Typical)

Photomicrosensor-Reflective - EE-SY313/413

Features

- Incorporates an IC chip with a built-in detector element and amplifier.
- Incorporates a detector element with a built-in temperature compensation circuit.
- Compact reflective Photomicrosensor (EE-SY310/-SY410) with a molded housing and a dust-tight cover.
- A wide supply voltage range: 4.5 to 16 VDC
- Directly connects with C-MOS and TTL.
- Dark ON model (EE-SY313)
- Light ON model (EE-SY413)

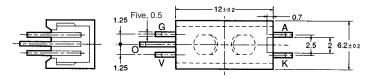
Specifications -

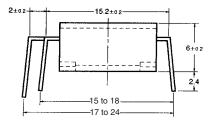
■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Power supply voltage	V _{CC}	16 V
	Output voltage	V _{OUT}	28 V
	Output current	lout	16 mA
	Permissible output dissipation	P _{OUT}	250 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 65°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

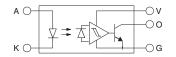
Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with frequency of 100 Hz.


3. Complete soldering within 10 seconds.

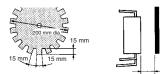

Electrical and Optical Characteristics (Ta = 25°C)

	Item	Symbol	Value	Condition
Emitter	Forward voltage	VF	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	IR	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	920 nm typ.	I _F = 20 mA
Detector	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 4.5 \text{ to } 16 \text{ V}, I_{OL} = 16 \text{ mA},\\ \text{without incident light (EE-SY313)},\\ \text{with incident light (EE-SY413) (see}\\ \text{notes } 1 \ \& \ 2) \end{array}$
	High-level output voltage	V _{OH}	15 V min.	V_{CC} = 16 V, R_L = 1 k $\Omega,$ with incident light (EE-SY313), without incident light (EE-SY413) (see notes 1 & 2)
	Current consumption	I _{cc}	3.2 mA typ., 10 mA max.	V _{CC} = 16 V
	Peak spectral sensitivity wavelength	λ _P	870 nm typ.	$V_{CC} = 4.5$ to 16 V
LED current	when output is OFF	I _{FT}	10 mA typ., 20 mA max.	V _{CC} = 4.5 to 16 V
LED current	LED current when output is ON			
Hysteresis		ΔH	17% typ.	V _{CC} = 4.5 to 16 V
Response frequency		f	50 pps min.	V_{CC} = 4.5 to 16 V, I_{F} = 20 mA, I_{OL} = 16mA
Response delay time		t _{PLH} (t _{PHL})	3 μs typ.	$V_{\rm CC}$ = 4.5 to 16 V, $I_{\rm F}$ = 20 mA, $I_{\rm OL}$ = 16mA
Response de	lay time	t _{PHL} (t _{PLH})	20 µs typ.	V_{CC} = 4.5 to 16 V, I_{F} = 20 mA, I_{OL} = 16mA

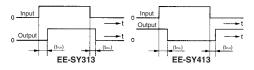

Dimensions

Note: All units are in millimetres unless otherwise indicated.

Internal Circuit

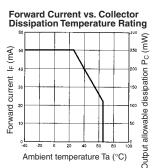

Unless otherwise specified, the tolerances are as shown right.

Photomicrosensor-Reflective - EE-SY313/413

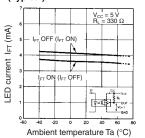

Terminal No.	Name
A	Anode
К	Cathode
V	Power supply (V _{CC})
0	Output (OUT)
G	Ground (GND)

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

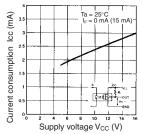
The value of the response frequency is measured by rotating the disk as shown below.

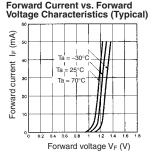


 The following illustrations show the definition of response delay time. The value in the parentheses applies to the EESY413.

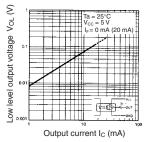


- Note: 1. "With incident light" denotes the condition whereby the light reflected by white paper with a reflection factor of 90% at a sensing distance of 4.4 mm is received by the photo IC when the forward current (I_F) of the LED is 20 mA.
 - 2. Sensing object: White paper with a reflection factor of 90% at a sensing distance of 4.4 mm.
 - Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC is turned from ON to OFF and when the photo IC is turned from OFF to ON.

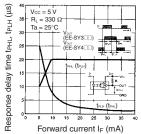

Note: The values in parentheses apply to EE-SY413.

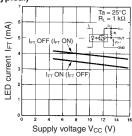


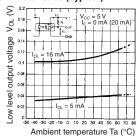
LED Current vs. Ambient Temperature Characteristics (Typical)

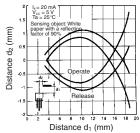


Current Consumption vs. Supply Voltage (Typical)




Low-level Output Voltage vs. Output Current (Typical)


Response Delay Time vs. Forward Current (Typical)


LED Current vs. Supply Voltage (Typical)

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)

Sensing Position Characteristics (Typical)

Photomicrosensor-Reflective – EE-SF5(-B)

Features

- Dust-tight construction.
- With a visible-light intercepting filter which allows objects to be sensed without being greatly influenced by the light radiated from fluorescent lamps.
- Mounted with M2 screws.
- Model with soldering terminals (EE-SF5).
- Model with PCB terminals (EE-SF5-B).

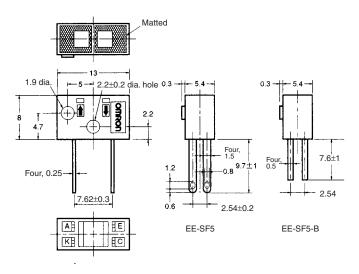
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

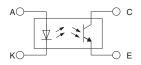
Item		Symbol	Rated value
Emitter	Forward current	I _F	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	I _C	20 mA
	Collector dissipation	P _C	100 mW (see note 1)
Ambient temperature	Operating	Topr	-25°C to 80°C
	Storage	Tstg	-30°C to 80°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with a frequency of 100Hz.


3. Complete soldering within 10 seconds.

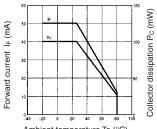
Electrical and Optical Characteristics (Ta = 25°C)


Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	$I_F = 30 \text{ mA}$
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_{R} = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	$I_F = 20 \text{ mA}$
Detector	Light current	IL	200 μA min., 2,000 μA max.	$I_{F}=20\mbox{ mA},V_{CE}=10\mbox{ V}$ White paper with a reflection ratio of 90%, d = 5 mm (see note)
	Dark current	ID	2 nA typ., 200 nA max.	V_{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	2 μA max.	$I_F = 20$ mA, $V_{CE} = 10$ V with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CC} = 10 V$
Rising time		tr	30 µs typ.	$V_{CC}=5~V,~R_L=1~k\Omega,~I_L=1~mA$
Falling time		tf	30 µs typ.	V_{CC} = 5 V, R_L = 1 k\Omega, I_L = 1 mA

Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

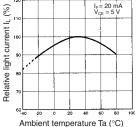
Note: All units are in millimetres unless otherwise indicated.

Internal Circuit

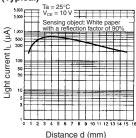


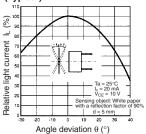
Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

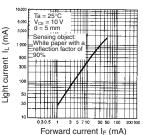
Unless otherwise specified, the tolerances are as shown below.

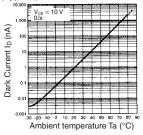

r	
Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65

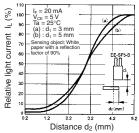
Forward Current vs. Collector Dissipation Temperature Rating

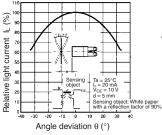


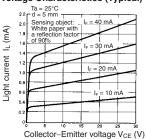

Characteristics (Typical)

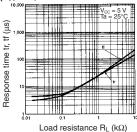

Sensing Distance Characteristics (Typical)

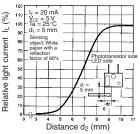

Sensing Angle Characteristics (Typical)

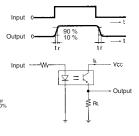

Light Current vs. Forward Current Characteristics (Typical)


Dark Current vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)


Sensing Angle Characteristics (Typical)


Light Current vs. Collector–Emitter Voltage Characteristics (Typical)


Response Time vs. Load Resistance Characteristics (Typical)

Sensing Position Characteristics (Typical)

Response Time Measurement Circuit

Photomicrosensor-Reflective – EE-SY110

Features

Compact reflective model with a moulded housing.

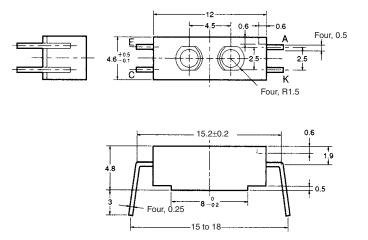
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

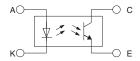
Item		Symbol	Rated value
Emitter	Forward current	IF	50 mA (see note 1)
	Pulse forward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Collector-Emitter voltage	V _{CEO}	30 V
	Emitter-Collector voltage	V _{ECO}	-
	Collector current	Ic	20 mA
	Collector dissipation	Pc	100 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 85°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μ s maximum with a frequency of 100Hz.


3. Complete soldering within 10 seconds.

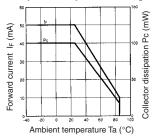
Electrical and Optical Characteristics (Ta = 25°C)


Item		Symbol	Value	Condition
Emitter	Forward voltage	V _F	1.2 V typ., 1.5 V max.	I _F = 30 mA
	Reverse current	I _R	0.01 µA typ., 10 µA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector	Light current	IL	200 μA min., 2,000 μA max.	$\label{eq:l_F} \begin{array}{l} I_F = 20 \text{ mA}, \ V_{CE} = 10 \text{ V} \\ \text{White paper with a reflection ratio} \\ \text{of 90\%, d} = 5 \text{ mm (see note)} \end{array}$
	Dark current	ID	2 nA typ., 200 nA max.	V _{CE} = 10 V, 0ℓx
	Leakage current	I _{LEAK}	2 µA max.	$I_F = 20$ mA, $V_{CE} = 10$ V with no reflection
	Collector-Emitter saturated voltage	V _{CE} (sat)	-	-
	Peak spectral sensitivity wavelength	λ _P	850 nm typ.	$V_{CC} = 10 V$
Rising time		tr	30 µs typ.	$V_{CC}=5~V,~R_L=1~k\Omega,~I_L=1~mA$
Falling time		tf	30 µs typ.	V_{CC} = 5 V, R_L = 1 k Ω , I_L = 1 mA

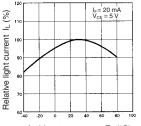
Note: The letter 'd' indicates the distance between the top surface of the sensor and the sensing object.

Note: All units are in millimetres unless otherwise indicated.

Internal Circuit

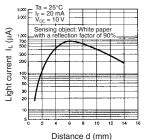


Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E	Emitter

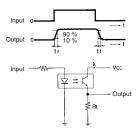

Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerence
3 mm max.	±0.2
3 < mm ≤ 6	±0.24
6 < mm ≤ 10	±0.29
10 < mm ≤ 18	±0.35
18 < mm ≤ 30	±0.42

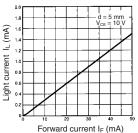
Forward Current vs. Collector Dissipation Temperature Rating

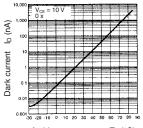


Relative Light Current vs. Ambient Temperature Characteristics (Typical)

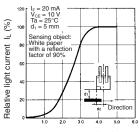


Ambient temperature Ta (°C)

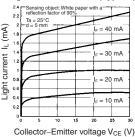

Sensing Distance Characteristics (Typical)


Response Time Measurement Circuit

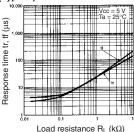
Light Current vs. Forward Current Characteristics (Typical)



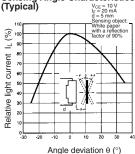
Dark Current vs. Ambient Temperature Characteristics (Typical)


Ambient temperature Ta (°C)

Sensing Position Characteristics (Typical)



Distance d₂ (mm)


Light Current vs. Collector–Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Sensing Angle Characteristics

Photomicrosensor-Reflective - EE-SY310/410

Features

- Incorporates an IC chip with a built-in detector element and amplifier.
- Incorporates a detector element with a built-in temperature compensation circuit.
- Compact reflective model with a molded housing.
- A wide supply voltage range: 4.5 to 16 VDC
- Directly connects with C-MOS and TTL.
- Dark ON model (EE-SY310)
- Light ON model (EE-SY410)

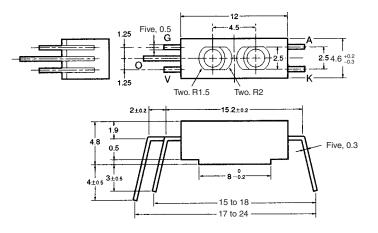
Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	Forward current	l _F	50 mA (see note 1)
	Pulse foward current	I _{FP}	1 A (see note 2)
	Reverse Voltage	V _R	4 V
Detector	Power supply voltage	V _{CC}	16 V
	Output voltage	V _{OUT}	28 V
	Output current	lout	16 mA
	Permissible output dissipation	P _{OUT}	250 mW (see note 1)
Ambient temperature	Operating	Topr	-40°C to 75°C
	Storage	Tstg	-40°C to 85°C
Soldering temperature		Tsol	260°C (see note 2)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

2. The pulse width is 10 μs maximum with frequency of 100 Hz.

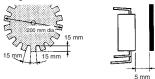

3. Complete soldering within 10 seconds.

■ Electrical and Optical Characteristics (Ta = 25°C)

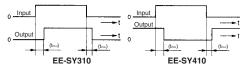
Item		Symbol	Value	Condition
Emitter	Forward voltage	VF	1.2 V typ., 1.5 V max.	I _F = 20 mA
	Reverse current	IR	0.01 μA typ., 10 μA max.	$V_R = 4 V$
	Peak emission wavelength	λ _P	920 nm typ.	I _F = 20 mA
Detector	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 4.5 \text{ to } 16 \text{ V}, I_{OL} = 16 \text{ mA},\\ \text{without incident light (EE-SY310)},\\ \text{with incident light (EE-SY410) (see}\\ \text{notes } 1 \ \& \ 2) \end{array}$
	High-level output voltage	V _{OH}	15 V min.	V_{CC} = 16 V, R_L = 1 k $\Omega,$ with incident light (EE-SY310), without incident light (EE-SY410) (see notes 1 & 2)
	Current consumption	I _{cc}	3.2 mA typ., 10 mA max.	V _{CC} = 16 V
	Peak spectral sensitivity wavelength	λ _P	870 nm typ.	V _{CC} = 4.5 to 16 V
LED current	LED current when output is OFF		6 mA typ., 15 mA max.	V _{CC} = 4.5 to 16 V
LED current when output is ON		1		
Hysteresis		ΔH	17% typ.	V _{CC} = 4.5 to 16 V
Response frequency		f	50 Hz min.	V_{CC} = 4.5 to 16 V, I_{F} = 15 mA, I_{OL} = 16mA
Response delay time		t _{PLH} (t _{PHL})	3 µs min.	$V_{\rm CC}$ = 4.5 to 16 V, $I_{\rm F}$ = 15 mA, $I_{\rm OL}$ = 16mA
Response delay time		t _{PHL} (t _{PLH})	20 µs typ.	V_{CC} = 4.5 to 16 V, I_{F} = 15 mA, I_{OL} = 16mA

Dimensions

Note: All units are in millimetres unless otherwise indicated.

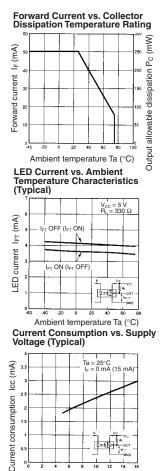

Unless otherwise specified, the tolerances are as shown right.

Photomicrosensor-Reflective – EE-SY310/410

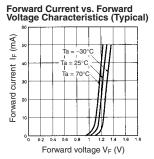

Terminal No.	Name
A	Anode
к	Cathode
V	Power supply V _{CC}
0	Output (OUT)
G	Ground (GND)

Dimensions	Tolerence
3 mm max.	±0.2
3 < mm ≤ 6	±0.24
6 < mm ≤ 10	±0.29
10 < mm ≤ 18	±0.35
18 < mm ≤ 30	±0.42

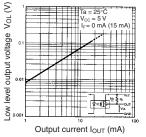
The value of the response frequency is measured by rotating the disk as shown below.

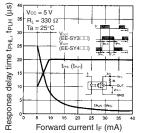


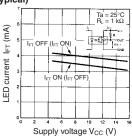
 The following illustrations show the definition of response delay time. The value in the parentheses applies to the EESY410.

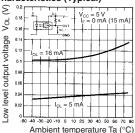


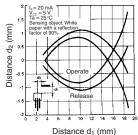
- Note: 1. "With incident light" denotes the condition whereby thelight reflected by white paper with a reflection factor of 90% at a sensing distance of 5 mm is received by the photo IC when the forward current (l_f) of the LED is 20 mA.
 - 2. Sensing object: White paper with a reflection factor of 90% at a sensing distance of 5 mm.
 - Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the photo IC is turned from ON to OFF and when the photo IC is turned from OFF to ON.


Note: The values in parentheses apply to EE-SY413.

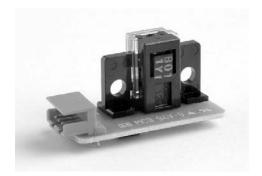



Low-level Output Voltage vs. Output Current (Typical)


Response Delay Time vs. Forward Current (Typical)


LED Current vs. Supply Voltage (Typical)

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)


Sensing Position Characteristics (Typical)

Photomicrosensor-Displacement – Z4D-B01

Features

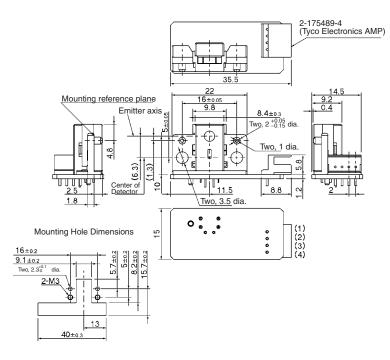
- Easier control enabled by built-in processor circuit.
- Resolution: ±10 µm.
- Operating area: 6.5±1 mm.
- Adapts well to changes in reflection factor using division processing.

Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Value	Unit	Features
Supply voltage	V _{CC}	7	VDC	-
LED pulse light emission control signal	PLS	7	VDC	LED
LED light emission pulse	t _{FP}	100	ms	-
Operating temperature	T _{opr}	-10 to 65	°C	No icing or condensation
Storage temperature	T _{stg}	-25 to 80	°C	-

■ Electrical and Optical Characteristics (Ta = -10°C to 65°C)


Item	Symbol	Rated value	Remarks
Supply voltage	V _{CC}	5 VDC±10%	Ripple (p-p): 10 mV p-p max.
Output voltage	OUT	0.2 VDC to (V _{cc} -0.3) V	(see note 1)
Response time	tr	100 µs max.	(see note 2)
LED pulse light emission control signal	PLS	3.5 VDC to V_{cc}	(see note 3)

Note: 1. Load impedance (between OUT-GND) is set at more than 10 k Ω .

2. The time for output voltage to rise from 10% to 90% of the full output range.

3. Apply the voltage ranging from 3.5 V to V_{cc} on the LED pulse light emission control signal terminal. In this case, a maximum of 2 mA (typ.1 mA) current is sunk.

Note: All units are in millimetres unless otherwise indicated.

Recommended Mating Connectors:

Tyco Electronics AMP 175778-4 (crimp-type connector) 173977-4 (press-fit connector)

Pin No.	Remarks
1	PLS
2	V _{CC}
3	OUT
4	GND

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65
30 < mm ≤ 50	±0.8

■ Characteristics (Ta = -10°C to 65°C)

Object: N8.5 Munsell paper with a reflection factor of 70%.

Pin No.	Remarks	
Operating area (see note 1)	6.5 ±1 mm	
Sensitivity variation (see note 2)	-1.4 mV/µm±10% max.	
Resolution (see note 3)	±10 µm max. (Ta = 25°C)	
Linearity (see note 4)	2% F.S. (full scale) max.	

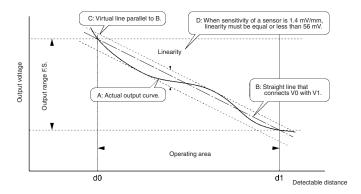
Note: 1. Distance from the mounting reference plane.

"Sensitivity" is defined as "inclination of divided output line" and the variation value between individual products of fluctuating divided output voltage per unit length.

Sensitivity =
$$\frac{V_2 - V_0}{2000}$$
 (mV/µm)

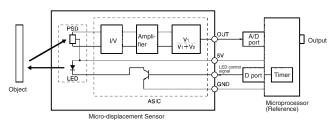
Where

V₀: Output voltage when d = 5.5 mm

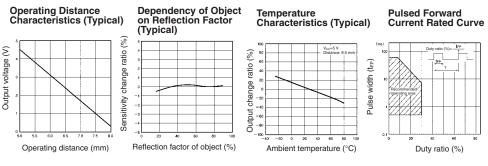

 V_2 : Output voltage when d = 7.5 mm

d: Distance from reference mounting plane to an object.

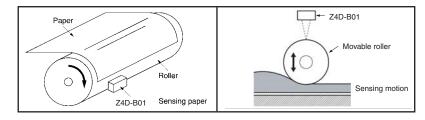
3. Value of electrical noise range of divided output signal converted to distance under the following conditions.



- (1) Ripple noise of power supply: 10 mV p-p max.
- (2) Sampling time of the sample and hold circuit: 50 μsec
- (3) Distance to object: Distance from the reference mounting plane is 6.5 mm±1 mm ** When the testing conditions are deviated from the above conditions, resolution changes. For details, please consult OMRON sales representative.
- The peak-to-peak value of the output error from the ideal line. Calculation, based on a linearity of 2% F.S., is as follows:
 - (1) The conversion value based on the full scale distance: 2 mm 0.02 = 0.04 mm (40 μ m)
 - (2) The conversion value based on the output voltage: 1.4 mV/ μ m 40 μ m = 56 mV
 - (When the product sensitivity variation is 1.4 mV/ μ m)

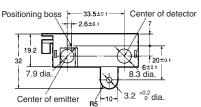


Photomicrosensor-Displacement - Z4D-B01

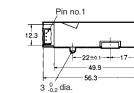

Circuit Diagram

Engineering Data

Paper thickness detection for printers



3.6


Manuscript Paper Sensor (1 Beam: 80 mm)

Dimensions

Note: All units are in millimeters unless otherwise indicated.

15

Features

- Ensures higher sensitivity and external light interference resistivity than any other photomicrosensor.
- Narrow sensing range ensures stable sensing of a variety of sensing objects.

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Power supply voltage		Vcc	7 V
Load voltage		Vout	7 V
Load current		Іолт	10 mA
Ambient	Operating	Topr	0°C to 60°C
temperature	Storage	Tstg	–15∞C to 0°C

3.3

27

Note: Make sure there is no icing or condensation when operating the Sensor.

Pin no.	Remarks	Name
1	0	Output (OUT)
2	V	Power supply (Vcc)
3	G	Ground (GND)

Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerance
3mm max.	±0.3
3 <mm≤ 6<="" td=""><td>±0.375</td></mm≤>	±0.375
6 <mm≤ 10<="" td=""><td>±0.45</td></mm≤>	±0.45
10 <mm≤ 18<="" td=""><td>±0.55</td></mm≤>	±0.55
18 <mm≤ 30<="" td=""><td>±0.65</td></mm≤>	±0.65
30 <mm≤ 50<="" td=""><td>±0.8</td></mm≤>	±0.8
50 <mm≤ 80<="" td=""><td>±0.95</td></mm≤>	±0.95

Recommended Mating Connectors:

Japan Molex 51090-0300 (crimp connector)

52484-0310 (press-fit connector)

Electrical and Optical Characteristics (Ta = 0°C to 60°C)

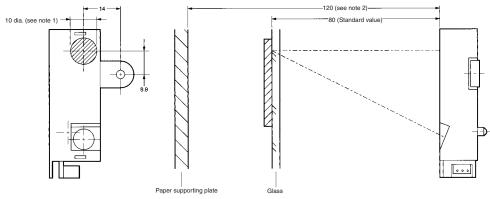
Item	Symbol	Rated value
Power supply voltage	5 V ±5%	
Current consumption	50 mA max.	VCC = 5 V, RL = •
Peak current consumption	200 mA max.	VCC = 5 V, RL = •
Low-level output voltage	0.6 V max.	VCC = 5 V, IOL = 4 mA (see note 1)
High-level output voltage	3.5 V min.	VCC = 5 V, RL = 4.7 kW (see note 2)
Response delay time (High to Low)	1.5 ms max.	The time required for the output to become "Lo" after placing sensing object.
Response delay time (Low to high)	1.5 ms max.	The time required for the output to become "Hi" after removing sensing object.

Note: 1. These conditions are for the sensing of lusterless paper with an OD of 0.7 maximum located at the correct sensing position of the Sensor as shown in the optical path arrangement on page 9.

2. These conditions are for the sensing of the paper supporting plate with an OD of 0.05 located using the glass plate without paper as shown in the optical path arrangement on page 9.

Characteristics (Paper Table Glass: t = 6 mm max., Transparency Rate: 90% min.) (Ta =0°C to 60°C)

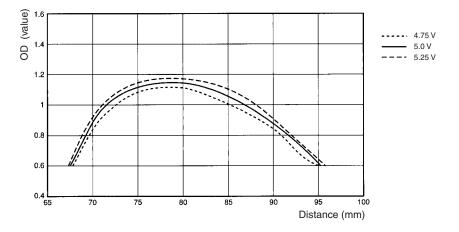
Item	Characteristic value
Sensing density	Lusterless paper with an OD of 0.7 max. (sensing distance: 80 mm) (see note)
Non-sensing distance	120 mm (from the top of the sensor), OD: 0.05
Paper sensing distance	80 mm (from the top of the sensor)
Ambient illumination	Sunlight: 3,000 lx max., fluorescent light: 2,000 lx max.


Note: 1. The data shown are initial data.

2. Optical darkness (OD) is defined by the following formula:

$$OD = -\log_{10}\left(\frac{P_{OUT}}{P_{IN}}\right)$$

 $P_{\mathbb{N}}$ (mW):Light power incident upon the document P_{out} (mW):Reflected light power from the document


Optical Path Arrangement

- Note: 1. The part with oblique lines indicates the paper sensing area of the EY3A-1081, which is practically determined by the diameter of the beam and its tolerance.
 - 2. The non-sensing distance of the EY3A-1081 is determined using a paper with an OD of 0.05.

Optical Path Arrangement

Distance Characteristics (Typical)

CAT. No. E963-E2-01

Photomicrosensor-Multi-beam Sensor – EY3A-112

Features

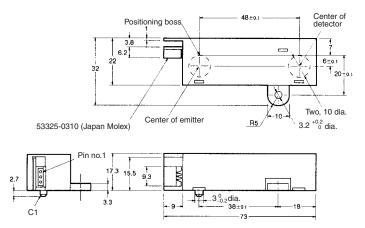
- Ensures higher sensitivity and external light interference resistivity than any other photomicrosensor.
- Narrow sensing range ensures stable sensing of a variety of sensing objects.

Specifications -

Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rated value
Power supply voltage		V _{cc}	7 V
Load voltage		Vout	7 V
Load current		I _{OUT}	10 mA
Ambient temperature	Operating	Topr	0°C to 65°C
	Storage	Tstg	-15°C to 70°C

Note: Make sure there is no icing or condensation when operating the sensor.


Electrical and Optical Characteristics (Ta = 0°C to 65°C)

Item	Value	Condition
Power supply voltage	5 V ±5%	-
Current consumption	50 mA max.	$V_{CC} = 5 \text{ V}, \text{ R}_L = \infty$
Peak current consumption	200 mA max.	$V_{CC} = 5 \text{ V}, \text{ R}_{L} = \infty$
Low-level output voltage	0.6 V max.	$V_{CC} = 5 \text{ V}, \text{ I}_{OL} = 4 \text{ mA} \text{ (see note 1)}$
High-level output voltage	3.5 V min.	V_{CC} = 5 V, R_L = 4.7 $k\Omega$ (see note 2)
Response delay time (High to low)	35 ms max.	The time required for the output to become "Lo" after placing sensing object.
Response delay time (Low to high)	20 ms max.	The time required for the output to become "Hi" after removing sensing object.

Note: 1. These conditions are for the sensing of lusterless paper with an OD of 0.6 maximum located at the correct sensing position of the Sensor.

2. These conditions are for the sensing of the paper supporting plate with an OD of 0.05 located using the glass plate without paper.

Note: All units are in millimetres unless otherwise indicated.

Recommended Mating Connectors:

Japan Molex 51090-0300 (crimp-type connector) 52484-0310 (insulation displacement-type connector)

Pin No.	Remarks	Name
1	0	Output (OUT)
2	V	Power supply (V _{CC})
3	G	Ground (GND)

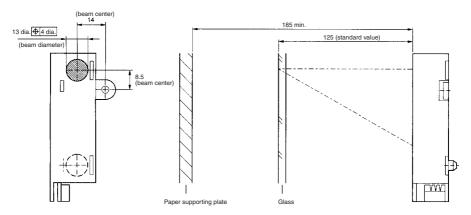
Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerence
3 mm max.	±0.3
3 < mm ≤ 6	±0.375
6 < mm ≤ 10	±0.45
10 < mm ≤ 18	±0.55
18 < mm ≤ 30	±0.65
30 < mm ≤ 50	±0.8
50 < mm ≤ 80	±0.95

■ Characteristics (Paper Table Glass: t = 6 mm max., Transparency Rate: 90% min.) (Ta = 0°C to 65°C)

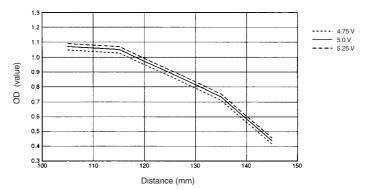
Item	Characteristic value
Sensing density	Lusterless paper with an OD of 0.6 max. (sensing distance: 125 mm) (see note)
Non-sensing distance	185 mm (from the top of the sensor), OD: 0.05
Paper sensing distance	125 mm (from the top of the sensor)
Ambient illumination	Sunlight: 3,000 ℓx max., fluorescent light: 2,000 ℓx max.

Note: 1. The data shown are initial data.


2. Optical darkness (OD) is defined by the following formula:

$$CD = -log_{10} \left(\frac{P_{OUT}}{P_{IN}} \right)$$

P_{IN} (mW): P_{OUT} (mW):


I): Light power incident upon the documentW): Reflected light power from the document

Optical Path Arrangement

Engineering Data

Distance Characteristics (Estimated Lower-limit Value).

